Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The ternary Goldbach conjecture (1742) asserts that every odd number greater than $5$ can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant $C$ satisfies the conjecture. In the years since then, there has been a succession of results reducing $C$, but only to levels much too high for a verification by computer up to $C$ to be possible $(C>10^{1300})$. (Works by Ramare and Tao have solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof.
ternary Goldbach conjecture - sums of primes - circle method
[-]
The ternary Goldbach conjecture (1742) asserts that every odd number greater than $5$ can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant $C$ satisfies the conjecture. In the years since then, there has been a succession of results reducing $C$, but only to levels much too high for a verification by computer up to $C$ to be ...
[+]
11P32 ; 11N35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The subconvexity of L-functions aims to refine estimates of central values, going beyond mere convexity. This is important in analytic number theory, especially in the study of the distribution of prime numbers. Researchers seek to establish more precise bounds for these L-functions to better understand prime numbers, particularly by exploring connections with automorphic forms. This approach offers an enriching perspective for understanding the deep structure of L-functions and also provides insights into advanced conjectures such as the Riemann hypothesis.
[-]
The subconvexity of L-functions aims to refine estimates of central values, going beyond mere convexity. This is important in analytic number theory, especially in the study of the distribution of prime numbers. Researchers seek to establish more precise bounds for these L-functions to better understand prime numbers, particularly by exploring connections with automorphic forms. This approach offers an enriching perspective for understanding the ...
[+]
11M41 ; 11F66 ; 11F72
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The subconvexity of L-functions aims to refine estimates of central values, going beyond mere convexity. This is important in analytic number theory, especially in the study of the distribution of prime numbers. Researchers seek to establish more precise bounds for these L-functions to better understand prime numbers, particularly by exploring connections with automorphic forms. This approach offers an enriching perspective for understanding the deep structure of L-functions and also provides insights into advanced conjectures such as the Riemann hypothesis.
[-]
The subconvexity of L-functions aims to refine estimates of central values, going beyond mere convexity. This is important in analytic number theory, especially in the study of the distribution of prime numbers. Researchers seek to establish more precise bounds for these L-functions to better understand prime numbers, particularly by exploring connections with automorphic forms. This approach offers an enriching perspective for understanding the ...
[+]
11M41 ; 11F66 ; 11F72