En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Lokshtanov, Daniel 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Tree decompositions and graph algorithms - Lokshtanov, Daniel (Auteur de la conférence) | CIRM

Multi angle

A central concept in graph theory is the notion of tree decompositions - these are decompositions that allow us to split a graph up into "nice" pieces by "small" cuts. It is possible to solve many algorithmic problems on graphs by decomposing the graph into "nice" pieces, finding a solution in each of the pieces, and then gluing these solutions together to form a solution to the entire graph. Examples of this approach include algorithms for deciding whether a given input graph is planar, the $k$-Disjoint paths algorithm of Robertson and Seymour, as well as many algorithms on graphs of bounded tree-width. In this talk we will look at a way to compare two tree decompositions of the same graph and decide which of the two is "better". It turns out that for every cut size $k$, every graph $G$ has a tree decomposition with (approximately) this cut size, such that this tree-decomposition is "better than" every other tree-decomposition of the same graph with cut size at most $k$. We will discuss some consequences of this result, as well as possible improvements and research directions.[-]
A central concept in graph theory is the notion of tree decompositions - these are decompositions that allow us to split a graph up into "nice" pieces by "small" cuts. It is possible to solve many algorithmic problems on graphs by decomposing the graph into "nice" pieces, finding a solution in each of the pieces, and then gluing these solutions together to form a solution to the entire graph. Examples of this approach include algorithms for ...[+]

05C85 ; 05C35 ; 68Q25

Sélection Signaler une erreur