Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hilbert's Nullstellensatz is a fundamental result in commutative algebra which is the starting point for classical algebraic geometry. In this talk, I will discuss a version of Hilbert's Nullstellensatz in chromatic homotopy theory, where Lubin-Tate theories play the role of algebraically closed fields. Time permitting, I will then indicate some of the applications of the chromatic nullstellensatz including to redshift for the algebraic K-theory of commutative algebras. This is joint work with Tomer Schlank and Allen Yuan.
[-]
Hilbert's Nullstellensatz is a fundamental result in commutative algebra which is the starting point for classical algebraic geometry. In this talk, I will discuss a version of Hilbert's Nullstellensatz in chromatic homotopy theory, where Lubin-Tate theories play the role of algebraically closed fields. Time permitting, I will then indicate some of the applications of the chromatic nullstellensatz including to redshift for the algebraic K-theory ...
[+]
55P43 ; 19D99