En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Saper, Leslie 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

$L^2$-cohomology and the theory of weights - Saper, Leslie (Auteur de la conférence) | CIRM H

Multi angle

The intersection cohomology of a complex projective variety $X$ agrees with the usual cohomology if $X$ is smooth and satisfies Poincare duality even if $X$ is singular. It has been proven in various contexts (and conjectured in more) that the intersection cohomology may be represented by the $L^2$- cohomology of a Kähler metric defined on the smooth locus of $X$. The various proofs, though different, often depend on a notion of weight which manifests itself either through representation theory, Hodge theory, or metrical decay. In this talk we discuss the relations between these notions of weight and report on new work in this direction.[-]
The intersection cohomology of a complex projective variety $X$ agrees with the usual cohomology if $X$ is smooth and satisfies Poincare duality even if $X$ is singular. It has been proven in various contexts (and conjectured in more) that the intersection cohomology may be represented by the $L^2$- cohomology of a Kähler metric defined on the smooth locus of $X$. The various proofs, though different, often depend on a notion of weight which ...[+]

14F43 ; 55N33

Sélection Signaler une erreur