En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Raymond, Nicolas 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Boundary states of the magnetic Robin Laplacian - Raymond, Nicolas (Auteur de la conférence) | CIRM H

Multi angle

In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, I will explain how to derive a very precise Weyl law and a proof of quantum magnetic oscillations for excited states, and also how to refine simultaneously old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.
Joint work with R. Fahs, L. Le Treust and S. Vu Ngoc.[-]
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal d...[+]

81Q10 ; 35Pxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Dirac bag model in strong magnetic fields - Raymond, Nicolas (Auteur de la conférence) | CIRM H

Multi angle

This talk is devoted to two-dimensional Dirac operators on bounded domains coupled to a magnetic field perpendicular to the plane. It will be focused on the MIT bag boundary condition. I will describe recent results about accurate asymptotic estimates for the low-lying (positive and négative) eigenvalues in the limit of a strong magnetic field.
This is a joint work with J.-M. Barbaroux, L. Le Treust and E. Stockmeyer.

35P15 ; 32A70 ; 81Q20

Sélection Signaler une erreur