Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In a recent paper, Istvan Gaal and Laszlo Remete studied the integer solutions to binary quartic Thue equations of the form $x^4-dy^4 = \pm 1$, and used their results to determine pure quartic number fields which contain a power integral basis. In our talk, we propose a new way to approach this diophantine problem, and we also show how an effective version of the abc conjecture would allow for even further improvements. This is joint work with M.A. Bennett. We also discuss a relation between this quartic diophantine equation to recent joint work with P.-Z. Yuan.
[-]
In a recent paper, Istvan Gaal and Laszlo Remete studied the integer solutions to binary quartic Thue equations of the form $x^4-dy^4 = \pm 1$, and used their results to determine pure quartic number fields which contain a power integral basis. In our talk, we propose a new way to approach this diophantine problem, and we also show how an effective version of the abc conjecture would allow for even further improvements. This is joint work with ...
[+]
11D25 ; 11D57 ; 11R16