m

F Nous contacter


0

Women at CIRM  | enregistrements trouvés : 374

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

​We consider photoacoustic tomography in the presence of approximation and modelling errors. The inverse problem, i.e. estimation of the initial pressure from photoacoustic time-series measured on the boundary of the target, is approached in the framework of Bayesian inverse problems. The posterior distribution is examined in situations in which the forward model contains errors or uncertainties for example due to numerical approximations or uncertainties in the acoustic parameters. Modelling of these errors and its impact on the posterior distribution are investigated.
This is joint work with Teemu Sahlstrm, Jenni Tick and Aki Pulkkinen.
​We consider photoacoustic tomography in the presence of approximation and modelling errors. The inverse problem, i.e. estimation of the initial pressure from photoacoustic time-series measured on the boundary of the target, is approached in the framework of Bayesian inverse problems. The posterior distribution is examined in situations in which the forward model contains errors or uncertainties for example due to numerical approximations or ...

35R30 ; 35Q60 ; 65R32 ; 65C20 ; 92C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Classical invariant theory has essentially addressed the action of the general linear group on homogeneous polynomials. Yet the orthogonal group arises in applications as the relevant group of transformations, especially in 3 dimensional space. Having a complete set of invariants for its action on ternary quartics, i.e. degree 4 homogeneous polynomials in 3 variables, is, for instance, relevant in determining biomarkers for white matter from diffusion MRI.
We characterize a generating set of rational invariants of the orthogonal group acting on even degree forms by their restriction on a slice. These restrictions are invariant under the octahedral group and their explicit formulae are given compactly in terms of equivariant maps. The invariants of the orthogonal group can then be obtained in an explicit way, but their numerical evaluation can be achieved more robustly using their restrictions. The exhibited set of generators futhermore allows us to solve the inverse problem and the rewriting.
Central in obtaining the invariants for higher degree forms is the preliminary construction, with explicit formulae, for a basis of harmonic polynomials with octahedral symmetry, dif- ferent, though related, to cubic harmonics.
This is joint work with Paul Görlach (now at MPI Leipzig), in a joint project with Téo Papadopoulo (Inria Méditerranée).
Classical invariant theory has essentially addressed the action of the general linear group on homogeneous polynomials. Yet the orthogonal group arises in applications as the relevant group of transformations, especially in 3 dimensional space. Having a complete set of invariants for its action on ternary quartics, i.e. degree 4 homogeneous polynomials in 3 variables, is, for instance, relevant in determining biomarkers for white matter from ...

05E05 ; 13A50 ; 13P10 ; 68W30 ; 92C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a discrete functional equation over a curve E, of genus zero or one. In the first case, the functional equation corresponds to a so called q-difference equation and all the related generating series are differentially transcendental. For the genus one case, the dynamic of the functional equation corresponds to the addition by a given point P of the elliptic curve E. In that situation, one can relate the nature of the generating series to the fact that the point P is of torsion or not.
In the recent years, the nature of the generating series of walks in the quarter plane has attracted the attention of many authors in combinatorics and probability. The main questions are: are they algebraic, holonomic (solutions of linear differential equations) or at least hyperalgebraic (solutions of algebraic differential equations)? In this talk, we will show how the nature of the generating function can be approached via the study of a ...

05A15 ; 30D05 ; 39A13 ; 12F10 ; 12H10 ; 12H05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Interview au CIRM : Claire Voisin
Voisin, Claire (Personne interviewée) | CIRM (Editeur )

Claire Voisin, mathématicienne française, est Directrice de recherche au Centre national de la recherche scientifique (CNRS) à l'Institut de mathématiques de Jussieu, elle est membre de l'Académie des sciences et titulaire de la nouvelle chaire de mathématiques " géométrie algébrique " au Collège de France. Elle a reçu de nombreux prix nationaux et internationaux pour ses travaux en géométrie algébrique, et en particulier pour la résolution de la conjecture de Koidara sur les variétés de Kälher compactes et celle de la conjecture de Green sur les syzygies. Elle est depuis 2010 membre de l'Académie des sciences. Depuis le 2 juin 2016, elle est titulaire de la nouvelle chaire de mathématique " géométrie algébrique " devenant ainsi la première femme mathématicienne à entrer au Collège de France. Ses recherches portent sur la géométrie algébrique, notamment sur la conjecture de Hodge4, dans la lignée d'Alexandre Grothendieck ; la symétrie miroir et la géométrie complexe kählérienne.

Distinctions :

Médaille de bronze du CNRS (1988) puis médaille d'argent (2006)et médaille d'or (2016)
Prix IBM jeune chercheur (1989)
Prix EMS de la Société mathématique européenne (1992)
Prix Servant décerné par l'Académie des sciences (1996)
Prix Sophie-Germain décerné par l'Académie des sciences (2003)
Prix Ruth Lyttle Satter décerné par l'AMS (2007)
Clay Research Award en 2008
Prix Heinz Hopf (2015)
Officier de l'ordre national de la Légion d'honneur (2016)
Prix Shaw (2017)
Claire Voisin, mathématicienne française, est Directrice de recherche au Centre national de la recherche scientifique (CNRS) à l'Institut de mathématiques de Jussieu, elle est membre de l'Académie des sciences et titulaire de la nouvelle chaire de mathématiques " géométrie algébrique " au Collège de France. Elle a reçu de nombreux prix nationaux et internationaux pour ses travaux en géométrie algébrique, et en particulier pour la résolution de ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in the 1970s, 80s, and 90s, but continue to have modern applications.
In these lectures, we will review what it means for a 3-manifold to have a hyperbolic structure, and give tools to show that a manifold is hyperbolic. We will also discuss how to decompose examples of 3-manifolds, such as knot complements, into simpler pieces. We give conditions that allow us to use these simpler pieces to determine information about the hyperbolic geometry of the original manifold. Most of the tools we present were developed in ...

57M27 ; 57M50 ; 57M25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

La décomposition par substitution des permutations permet de voir ces objets combinatoires comme des arbres. Je présenterai d'abord cette décomposition par substitution, et les arbres sous-jacents, appelés arbres de décomposition. Puis j'exposerai une méthode, complètement algorithmique et reposant sur les arbres de décomposition, qui permet de calculer des spécifications combinatoires de classes de permutations à motifs interdits. La connaissance de telles spécifications combinatoires ouvre de nouvelles perspectives pour l'étude des classes de permutations, que je présenterai en conclusion.
La décomposition par substitution des permutations permet de voir ces objets combinatoires comme des arbres. Je présenterai d'abord cette décomposition par substitution, et les arbres sous-jacents, appelés arbres de décomposition. Puis j'exposerai une méthode, complètement algorithmique et reposant sur les arbres de décomposition, qui permet de calculer des spécifications combinatoires de classes de permutations à motifs interdits. La c...

68-06 ; 05A05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

I will present results on the dynamics of horocyclic flows on the unit tangent bundle of hyperbolic surfaces, density and equidistribution properties in particular. I will focus on infinite volume hyperbolic surfaces. My aim is to show how these properties are related to dynamical properties of geodesic flows, as product structure, ergodicity, mixing, ...

37D40

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk, we shall first review some projective criteria under which the central limit theorem holds. The projective criteria considered will be the Heyde criterion, the Hannan criterion, the Maxwell-Woodroofe condition and the Dedecker-Rio's condition. We shall also investigate under which projective criteria the reinforced versions of the CLT such as the weak invariance principle or the quenched CLT (and its functional form) still hold.

60F05 ; 60F17

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Interview at CIRM: Sarah Bray
Bray, Sarah (Personne interviewée) | CIRM (Editeur )

Sarah Bray is a PhD student in the Tufts Mathematics Department. She is currently undecided on a specialization topic, although interested in Hyperbolic Geometry and Dynamical Systems. She graduated from Hamilton College in 2011, where she played on the varsity Women’s Lacrosse Team all four years.

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of excitatory networks leads to phenomena of blow-up, once the proportion of neurons that are close to their action potential is too high. In this talk, we are interested in understanding the regimes where solutions globally exist. By new methods of entropy and upper-solution, we give criteria where the phenomena of blow-up can not appear and specify, in some cases, the asymptotic behavior of the solution.

integrate-and-fire - neural networks - Fokker-Planck equation - blow-up
In this talk, I will focus on a Fokker-Planck equation modeling interacting neurons in a network where each neuron is governed by an Integrate and Fire dynamic type. When the network is excitatory, neurons that discharge, instantaneously increased the membrane potential of the neurons of the network with a speed which is proportional to the amplitude of the global activity of the network. The self-excitable nature of these neurons in the case of ...

92B20 ; 82C32 ; 35Q84

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Maria Chudnovsky is a professor in the department of mathematics at Princeton University. She grew up in Russia and Israel, studying at the Technion and received her Ph.D. in 2003 from Princeton under the supervision of Paul Seymour. She moved to Columbia after being a Clay Mathematics Institute research fellow and assistant professor at Princeton. Chudnovsky's contributions to graph theory include the proof of the strong perfect graph theorem with Robertson, Seymour and Thomas characterizing perfect graphs as being exactly the graphs with no odd induced cycles of length at least 5 or their complements. Other research contributions of Chudnovsky include co-authorship of the first polynomial time algorithm for recognizing perfect graphs and of a structural characterization of the claw-free graphs.
Maria Chudnovsky is a professor in the department of mathematics at Princeton University. She grew up in Russia and Israel, studying at the Technion and received her Ph.D. in 2003 from Princeton under the supervision of Paul Seymour. She moved to Columbia after being a Clay Mathematics Institute research fellow and assistant professor at Princeton. Chudnovsky's contributions to graph theory include the proof of the strong perfect graph theorem ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We review basic results on determinantal varieties and show how to apply methods of singularity theory of matrices to study their invariants and geometry. The Nash transformation and the Euler obstruction of Essentially Isolated Determinantal Singularities (EIDS) are discussed. To illustrate the results we compute the Euler obstruction of corank one EIDS with non isolated singularities.

14B05 ; 32S05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to understand. One then construct maps called "cycle class maps" from Chow groups to several cohomological theories.
In this talk, we focus on the case of a variety $X$ over a finite field. In this case, Tate conjecture claims the surjectivity of the cycle class map with rational coefficients; this conjecture is still widely open. In case of integral coefficients, we speak about the integral version of the conjecture and we know several counterexamples for the surjectivity. In this talk, we present a survey of some well-known results on this subject and discuss other properties of algebraic cycles which are either proved or expected to be true. We also discuss several involved methods.
Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to ...

14C25 ; 14G15 ; 14J70 ; 14C15 ; 14H05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic structure. The purpose of the present lecture is to present an overview of some of the mathematical and numerical difficulties that may be encountered when dealing with fluid-structure interaction problems such as the geometrical nonlinearities or the added mass effect and how one can deal with these difficulties.
Many physical phenomena deal with a fluid interacting with a moving rigid or deformable structure. These kinds of problems have a lot of important applications, for instance, in aeroelasticity, biomechanics, hydroelasticity, sedimentation, etc. From the analytical point of view as well as from the numerical point of view they have been studied extensively over the past years. We will mainly focus on viscous fluid interacting with an elastic ...

74S05 ; 76M10 ; 74F10 ; 76D05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Interview at CIRM: Dusa McDuff
McDuff, Dusa (Personne interviewée) | CIRM (Editeur )

Dusa McDuff is the Helen Lyttle Kimmel '42 Professor of Mathematics at Barnard College. At Barnard, she currently teaches "Calculus I", "Perspectives in Mathematics" and courses in geometry and topology.
Professor McDuff gained her early teaching experience at the University of York (U.K.), the University of Warwick (U.K.) and MIT. In 1978, she joined the faculty of the Department of Mathematics at SUNY Stony Brook, where she was awarded the title of Distinguished Professor in 1998.
Professor McDuff has honorary doctorates from the University of Edinburgh, the University of York, the University of Strasbourg and the University of St Andrews. She is a fellow of the Royal Society, a member of the National Academy of Sciences, a member of the American Philosophical Society, and an honorary fellow of Girton College, Cambridge.
She has received the Satter Prize from the American Mathematical Society and the Outstanding Woman Scientist Award from AWIS (Association for Women in Science).
Professor McDuff's service to the mathematical community has been extensive. She is particularly interested in issues connected with the position of women in mathematics, and currently serves on the MSRI Board of Trustees. Together with Dietmar Salamon, she has written several foundational books on symplectic topology as well as many research articles.
Dusa McDuff is the Helen Lyttle Kimmel '42 Professor of Mathematics at Barnard College. At Barnard, she currently teaches "Calculus I", "Perspectives in Mathematics" and courses in geometry and topology.
Professor McDuff gained her early teaching experience at the University of York (U.K.), the University of Warwick (U.K.) and MIT. In 1978, she joined the faculty of the Department of Mathematics at SUNY Stony Brook, where she was awarded the ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Interview at CIRM: Sylvia Serfaty
Serfaty, Sylvia (Personne interviewée) | CIRM (Editeur )

Sylvia Serfaty is a Professor at the Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6. Sylvia Serfaty was a Global Distinguished Professor of Mathematics in the Courant Institute of Mathematical Sciences. She has been awarded a Sloan Foundation Research Fellowship and a NSF CAREER award (2003), the 2004 European Mathematical Society Prize, 2007 EURYI (European Young Investigator) award, and has been invited speaker at the International Congress of Mathematicians (2006), Plenary speaker at the European Congress of Mathematics (2012) and has recently received the IAMP Henri Poincar´e prize in 2012. Her research is focused on the study of Nonlinear Partial Differential Equations, calculus of variations and mathematical physics, in particular the Ginzburg-Landau superconductivity model. Sylvia Serfaty was the first to make a systematic and impressive asymptotic analysis for the case of large parameters in theory of the Ginzburg-Landau equation. She established precisely, with Etienne Sandier, the values of the first critical fields for nucleation of vortices in superconductors, as well as the leading and next to leading order effective energies that govern the location of these vortices and their arrangement in Abrikosov lattices In micromagnetics, her work with F. Alouges and T. Rivière breaks new ground on singularly perturbed variational problems and provides the first explanation for the internal structure of cross-tie walls.
http://www.ams.org/journals/notices/200409/people.pdf
Personal page : http://www.ann.jussieu.fr/~serfaty/
Sylvia Serfaty is a Professor at the Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6. Sylvia Serfaty was a Global Distinguished Professor of Mathematics in the Courant Institute of Mathematical Sciences. She has been awarded a Sloan Foundation Research Fellowship and a NSF CAREER award (2003), the 2004 European Mathematical Society Prize, 2007 EURYI (European Young Investigator) award, and has been invited speaker at ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d’autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L’objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu’introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d’auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d’horizon de leurs principales propriétés.
Les processus de fragmentation sont des modèles aléatoires pour décrire l’évolution d’objets (particules, masses) sujets à des fragmentations successives au cours du temps. L’étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l’objet de nombreuses recherches. Ceci s’explique à la fois par de multiples motivations (le champs d’applications est vaste : biologie et génétique des populations, formation de planètes, ...

60G18 ; 60J25 ; 60J85

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Unramified graph covers of finite degree
Li, Winnie (Auteur de la Conférence) | CIRM (Editeur )

Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density theorem.
This is a joint work with Hau-Wen Huang.
Given a finite connected undirected graph $X$, its fundamental group plays the role of the absolute Galois group of $X$. The familiar Galois theory holds in this setting. In this talk we shall discuss graph theoretical counter parts of several important theorems for number fields. Topics include
(a) Determination, up to equivalence, of unramified normal covers of $X$ of given degree,
(b) Criteria for Sunada equivalence,
(c) Chebotarev density ...

05C25 ; 05C50 ; 11R32 ; 11R44 ; 11R45

Z