En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Demailly, Jean-Pierre 7 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
A famous conjecture of Kobayashi from the 1970s asserts that a generic algebraic hypersurface of sufficiently large degree $d\geq d_n$ in the complex projective space of dimension $n+1$ is hyperbolic. Yum-Tong Siu introduced several fundamental ideas that led recently to a proof of the conjecture. In 2016, Damian Brotbek gave a new geometric argument based on the use of Wronskian operators and on an analysis of the geometry of Semple jet bundles. Shortly afterwards, Ya Deng obtained effective degree bounds by means of a refined technique. Our goal here will be to explain a drastically simpler proof that yields an improved (though still non optimal) degree bound, e.g. $d_n=[(en)^{2n+2}/5]$. We will also present a more general approach that could possibly lead to optimal bounds.[-]
A famous conjecture of Kobayashi from the 1970s asserts that a generic algebraic hypersurface of sufficiently large degree $d\geq d_n$ in the complex projective space of dimension $n+1$ is hyperbolic. Yum-Tong Siu introduced several fundamental ideas that led recently to a proof of the conjecture. In 2016, Damian Brotbek gave a new geometric argument based on the use of Wronskian operators and on an analysis of the geometry of Semple jet ...[+]

32Q45 ; 32L10 ; 53C55 ; 14J40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Algebraicity of the metric tangent cones - Wang, Xiaowei (Auteur de la Conférence) | CIRM H

Post-edited

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Let $f : X \to Y$ be a fibration between two projective manifolds. The Iitaka's conjecture predicts that the Kodaira dimension of $X$ is larger than the sum of the Kodaira dimension of $X$ and the Kodaira dimension of the generic fiber. We explain a proof of the Iitaka conjecture for algebraic fiber spaces over abelian varieties or projective surfaces.
It is a joint work with Mihai Paun.

14E30 ; 14K05 ; 14J10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Moduli of algebraic varieties - Dervan, Ruadhai (Auteur de la Conférence) | CIRM H

Multi angle

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We develop apriori estimates for scalar curvature type equations on compact Kähler manifolds. As an application, we show that K-energy being proper with respect to $L^1$ geodesic distance implies the existence of constant scalar curvature Kähler metrics. This is joint work with Xiuxiong Chen.

53C55 ; 32Q20 ; 32Q15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Pluripotential Kähler-Ricci flows - Guedj, Vincent (Auteur de la Conférence) | CIRM H

Multi angle

We develop a parabolic pluripotential theory on compact Kähler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge-Ampere equations. We provide a parabolic analogue of the celebrated Bedford-Taylor theory and apply it to the study of the Kähler-Ricci flow on varieties with log terminal singularities.

53C44 ; 32W20 ; 58J35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We will discuss several new ideas that can show the existence of jet differential operators on arbitrary projective varieties, and also on general hypersurfaces of $\mathbb{P}^n$ of sufficiently high degree. These results can be applied to improve degree bounds in several hyperbolicity problems and especially in the proof of the Kobayashi conjecture.

32Q45 ; 32L10 ; 53C55 ; 14J40

Sélection Signaler une erreur