Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the characteristic function, the density, and the repartition function of this distribution in terms of higher transcendental functions, namely Legendre and Meijer functions.
[-]
We discuss the distribution of the trace of a random matrix in the compact Lie group USp2g, with the normalized Haar measure. According to the generalized Sato-Tate conjecture, if A is an abelian variety of dimension g defined over the rationals, the sequence of traces of Frobenius in the successive reductions of A modulo primes appears to be equidistributed with respect to this distribution. If g = 2, we provide expressions for the cha...
[+]
11G05 ; 11G10 ; 14G10 ; 37C30