En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Pillay, Anand 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give an arithmetic version of Tao's algebraic regularity lemma (which was itself an improved Szemerédi regularity lemma for graphs uniformly definable in finite fields). In the arithmetic regime the objects of study are pairs $(G, D)$ where $G$ is a group and $D$ an arbitrary subset, all uniformly definable in finite fields. We obtain optimal results, namely that the algebraic regularity lemma holds for the associated bipartite graph $(G, G, E)$ where $E(x, y)$ is $x y^{-1} \in D$, witnessed by a the decomposition of $G$ into cosets of a uniformly definable small index normal subgroup $H$ of $G$.[-]
We give an arithmetic version of Tao's algebraic regularity lemma (which was itself an improved Szemerédi regularity lemma for graphs uniformly definable in finite fields). In the arithmetic regime the objects of study are pairs $(G, D)$ where $G$ is a group and $D$ an arbitrary subset, all uniformly definable in finite fields. We obtain optimal results, namely that the algebraic regularity lemma holds for the associated bipartite graph $(G, G, ...[+]

03C45 ; 11B30 ; 05C75

Sélection Signaler une erreur