En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 11J13 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will describe a very recent development for non-degenerate maps as well as a recently introduced simple technique based on the so-called Mass Transference Principle that surprisingly requires no conditions on the functions except them being $C^2$.[-]
As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will ...[+]

11J13 ; 11J83 ; 11K60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will discuss recent progress in analysis of uniform and ordinary Diophantine exponents $\hat\omega $ and $\omega$ for linear Diophantine approximation as well as some applications of the related methods. In particular, we give a new criterion for badly approximable vectors in $\mathbb{R}^{d}$ the behavior of the best approximation vectors in the sense of simultaneous approximation and in the sense of linear form. It turned out that compared to the one-dimensional case our criterion is rather unusual. We apply this criterion to the analysis of Dirichlet spectrum for simultaneous Diophantine approximation.[-]
We will discuss recent progress in analysis of uniform and ordinary Diophantine exponents $\hat\omega $ and $\omega$ for linear Diophantine approximation as well as some applications of the related methods. In particular, we give a new criterion for badly approximable vectors in $\mathbb{R}^{d}$ the behavior of the best approximation vectors in the sense of simultaneous approximation and in the sense of linear form. It turned out that compared ...[+]

11J13 ; 11J06 ; 11J70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On Schmidt's subspace theorem - Evertse, Jan-Hendrik (Auteur de la Conférence) | CIRM H

Post-edited

Last year, I published together with Roberto Ferretti a new version of the quantitative subspace theorem, giving a better upper bound for the number of subspaces containing the solutions of the system of inequalities involved. In my lecture, I would like to discuss this improvement, and go into some aspects of its proof.

11J13 ; 11J68

Sélection Signaler une erreur