En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 14F10 6 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We'll discuss our joint work with Ron Donagi and Tony Pantev on the construction of the Higgs bundles associated to Hecke eigensheaves for the geometric Langlands program in the case of rank 2 local systems on a curve of genus 2 . Recall that the moduli space of bundles in this case has two connected components: $\mathbb{P}^3$ and the intersection of two quadrics in $\mathbb{P}^5$. We look for Higgs bundles on these spaces with parabolic structure and logarithmic poles along the wobbly locus. This leads to the study of the geometry of the wobbly locus and its singularities, and the use of our Dolbeault higher direct image construction for the calculation of Hecke operators.[-]
We'll discuss our joint work with Ron Donagi and Tony Pantev on the construction of the Higgs bundles associated to Hecke eigensheaves for the geometric Langlands program in the case of rank 2 local systems on a curve of genus 2 . Recall that the moduli space of bundles in this case has two connected components: $\mathbb{P}^3$ and the intersection of two quadrics in $\mathbb{P}^5$. We look for Higgs bundles on these spaces with parabolic ...[+]

14H60 ; 14D24 ; 14F10 ; 14J33

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will show that there exists a correspondence between smooth $l$-adic sheaves and overconvergent $F$-isocrystals over a curve preserving the Frobenius eigenvalues. Moreover, we show the existence of $l$-adic companions associated to overconvergent $F$-isocrystals for smooth varieties.
Some part of the work is done jointly with Esnault.

12H25 ; 14F30 ; 14F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Skeletons and moduli of Stokes torsors - Teyssier, Jean-Baptiste (Author of the conference) | CIRM H

Multi angle

In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We will explain how to use a variant of Deligne's skeleton conjecture in characteristic 0 to prove the existence of an algebraic variety parametrizing Stokes torsors. We will show how the geometry of this moduli can be used to prove new finiteness results on differential equations.[-]
In the local classification of differential equations of one complex variable, torsors under a certain sheaf of algebraic groups (the Stokes sheaf) play a central role. On the other hand, Deligne defined in positive characteristic a notion of skeletons for l-adic local systems on a smooth variety, constructed an algebraic variety parametrizing skeletons and raised the question wether every skeleton comes from an actual l-adic local system. We ...[+]

32C38 ; 14F10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Arithmetic of rank one local systems - Esnault, Hélène (Author of the conference) | CIRM H

Multi angle

Joint with Moritz Kerz. We study arithmetic subvarieties of the character variety of normal complex varieties defined over a field of finite type.

14D20 ; 14F05 ; 14F10 ; 14F30 ; 14K15

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan and Pavel Safronov concerning a q-analogue of these ideas. The applications include an approach towards Witten's conjecture on the fi dimensionality of skein modules, and methods for computing these dimensions in certain cases.[-]
I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan ...[+]

14F10 ; 14D23

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Hodge filtration and birational geometry - Popa, Mihnea (Author of the conference) | CIRM H

Multi angle

I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, minimal exponents of singularities, etc. I will discuss a few, and more will appear in M. Mustaja's lecture.[-]
I will give a general introduction to the study of the Hodge filtration on local cohomology sheaves associated to closed subschemes of smooth complex varieties, using techniques from both D-module theory and birational geometry. In the case of hypersurfaces, this is essentially the theory of Hodge ideals, which I will recall. This study has applications to various topics, like local vanishing, local cohomological dimension, the Du Bois complex, ...[+]

14B05 ; 14F10 ; 32S35 ; 14F17

Bookmarks Report an error