Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of J.-P. Serre and others. When we say the two curves $E$ and $E'$ are ”congruent” we mean that $E[p]$ and $E'[p]$ are isomorphic as $G_{\mathbb{Q}}$-modules. While such congruences are known to exist for all primes up to 17, the Frey-Mazur conjecture states that p is bounded: more precisely, that there exists $B$ > 0 such that if $p > B$ and $E[p]$ and $E'[p]$ are isomorphic then $E$ and $E'$ are isogenous. We report on work toward establishing such a bound for the elliptic curves in the LMFDB database. Secondly, we describe methods for determining whether or not a given isomorphism between $E[p]$ and $E'[p]$ is symplectic (preserves the Weil pairing) or antisymplectic, and report on the results of applying these methods to the curves in the database.
This is joint work with Nuno Freitas (Warwick).
[-]
In this talk I will describe a systematic investigation into congruences between the mod $p$ torsion modules of elliptic curves defined over $\mathbb{Q}$. For each such curve $E$ and prime $p$ the $p$-torsion $E[p]$ of $E$, is a 2-dimensional vector space over $\mathbb{F}_{p}$ which carries a Galois action of the absolute Galois group $G_{\mathbb{Q}}$. The structure of this $G_{\mathbb{Q}}$-module is very well understood, thanks to the work of ...
[+]
11G05 ; 14H52 ; 11A07
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Finding an explicit isogeny between two given isogenous elliptic curves over a finite field is considered a hard problem, even for quantum computers. In 2011 this led Jao and De Feo to propose a key exchange protocol that became known as SIDH, shorthand for Supersingular Isogeny Diÿe-Hellman. The security of SIDH does not rely on a pure isogeny problem, due to certain 'auxiliary' elliptic curve points that are exchanged during the protocol (for constructive reasons). In this talk I will discuss a break of SIDH that was discovered in collaboration with Thomas Decru. The attack uses isogenies between abelian surfaces and exploits the aforementioned auxiliary points, so it does not break the pure isogeny problem. I will also discuss improvements of this attack due to Maino et al. and Robert, as well as a countermeasure by Fouotsa et al., along with breaks of this countermeasure in some special cases.
[-]
Finding an explicit isogeny between two given isogenous elliptic curves over a finite field is considered a hard problem, even for quantum computers. In 2011 this led Jao and De Feo to propose a key exchange protocol that became known as SIDH, shorthand for Supersingular Isogeny Diÿe-Hellman. The security of SIDH does not rely on a pure isogeny problem, due to certain 'auxiliary' elliptic curve points that are exchanged during the protocol (for ...
[+]
14G50 ; 14K02 ; 14H52 ; 14H40 ; 14G15
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université
[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...
[+]
11G20 ; 14G15 ; 14H52
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université
[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...
[+]
11G20 ; 14G15 ; 14H52
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include studying the group structure, arithmetic structure of the number of points (primality, smoothness, etc.) and certain divisibility conditions.
These questions are related to such celebrated problems as Lang-Trotter and Sato-Tate conjectures. More recently the interest to these questions was re-fueled by the needs of pairing based cryptography.
In a series of talks we will describe the state of art in some of these directions, demonstrate the richness of underlying mathematics and pose some open questions.
CIRM - Chaire Jean-Morlet 2014 - Aix-Marseille Université
[-]
We give a survey of results which address the following generic question: How does a random elliptic curve over a finite field look like.
This question has a rich variety of specfic interpretations, which depend on how one defines a random curve and what properties which are of interest. The former may include randomisation of the coefficients of the Weierstrass equation or the prime power defining the field, or both. The latter may include ...
[+]
11G20 ; 14G15 ; 14H52
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The modular curve $Y^1(N)$ parametrises pairs $(E,P)$, where $E$ is an elliptic curve and $P$ is a point of order $N$ on $E$, up to isomorphism. A unit on the affine curve $Y^1(N)$ is a holomorphic function that is nowhere zero and I will mention some applications of the group of units in the talk.
The main result is a way of generating generators (sic) of this group using a recurrence relation. The generators are essentially the defining equations of $Y^1(N)$ for $n < (N + 3)/2$. This result proves a conjecture of Maarten Derickx and Mark van Hoeij.
[-]
The modular curve $Y^1(N)$ parametrises pairs $(E,P)$, where $E$ is an elliptic curve and $P$ is a point of order $N$ on $E$, up to isomorphism. A unit on the affine curve $Y^1(N)$ is a holomorphic function that is nowhere zero and I will mention some applications of the group of units in the talk.
The main result is a way of generating generators (sic) of this group using a recurrence relation. The generators are essentially the defining ...
[+]
11F03 ; 11B37 ; 11B39 ; 11G16 ; 14H52
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The absolute Galois group of the rational numbers acts on the various flavours (profinite, prounipotent, pro-$\ell$) of the fundamental group of a smooth projective curve over the rationals. The image of the corresponding homomorphism normalizes the image of the profinite mapping class group in the automorphism group of the geometric fundamental group of the curve. The image of the Galois action modulo these “geometric automorphisms” is independent of the curve. A basic problem is to determine this image. This talk is a report on a joint project with Francis Brown whose goal is to understand the image mod geometric automorphisms in the prounipotent case. Standard arguments reduce the problem to one in genus 1, where one can approach the problem by studying the periods of iterated integrals of modular forms and their relation to multiple zeta values.
[-]
The absolute Galois group of the rational numbers acts on the various flavours (profinite, prounipotent, pro-$\ell$) of the fundamental group of a smooth projective curve over the rationals. The image of the corresponding homomorphism normalizes the image of the profinite mapping class group in the automorphism group of the geometric fundamental group of the curve. The image of the Galois action modulo these “geometric automorphisms” is ...
[+]
14H30 ; 14H52 ; 11M32
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ce résultat pour le modèle des forêts couvrantes, en particulier la preuve d'une transition de phase d'ordre 2 avec le modèle des arbre couvrants critiques sur les graphes isoradiaux, introduit par Kenyon. Finalement, nous considérons la courbe spectrale de ce Laplacien massique et montrons qu'il s'agit d'une courbe de Harnack de genre 1.
Il s'agit d'un travail en collaboration avec Cédric Boutillier et Kilian Raschel.
[-]
Après avoir expliqué la notion de Z-invariance pour les modèles de mécanique statistique, nous introduisons une famille à un paramètre (dépendant du module elliptique) de Laplaciens massiques Z-invariants définis sur les graphes isoradiaux. Nous démontrons une formule explicite pour son inverse, la fonction de Green massique, qui a la propriété remarquable de ne dépendre que de la géométrie locale du graphe. Nous expliquerons les conséquences de ...
[+]
82B20 ; 82B23 ; 82B41 ; 14H52 ; 14H70
Déposez votre fichier ici pour le déplacer vers cet enregistrement.