En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 16G20 9 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Exact $\infty$-categories - Jasso, Gustavo (Auteur de la Conférence) | CIRM H

Multi angle

Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact infinity-categories, relying on the newly-developed theory of infinity-categories developed by Joyal, Lurie and others. This new class of mathematical objects includes not only the exact categories in the sense of Quillen but also the stable inftinty-categories in the sense of Lurie (the latter are to be regarded as refinements of triangulated categories in the sense of Verdier). The purpose of this lecture series is to motivate the theory of exact infinity-categories and sketch some of its applications. Familiarity with the theory of infinity-categories is not expected.[-]
Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact ...[+]

18N60 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reid's recipe is an equivalent of the McKay correspondence in dimension three. It marks interior line segments and lattice points in the fan of the G-Hilbert scheme (a specific crepant resolution of $\mathbb{C}^{3} / G$ for $G \subset S L(3, \mathbb{C})$ ) with characters of irreducible representations of $G$. Our goal is to generalise this by marking the toric fan of a crepant resolution of any affine Gorenstein singularity, in a way that is compatible with both the G-Hilbert case and its categorical counterpart known as Derived Reid's Recipe. To achieve this, we foray into the combinatorial land of quiver moduli spaces and dimer models. This is joint work with Alastair Craw and Jesus Tapia Amador.[-]
Reid's recipe is an equivalent of the McKay correspondence in dimension three. It marks interior line segments and lattice points in the fan of the G-Hilbert scheme (a specific crepant resolution of $\mathbb{C}^{3} / G$ for $G \subset S L(3, \mathbb{C})$ ) with characters of irreducible representations of $G$. Our goal is to generalise this by marking the toric fan of a crepant resolution of any affine Gorenstein singularity, in a way that is ...[+]

14E16 ; 14M25 ; 16E35 ; 16G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Cluster algebras and categorification - Lecture 1 - Amiot, Claire (Auteur de la Conférence) | CIRM H

Post-edited

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 2 - Amiot, Claire (Auteur de la Conférence) | CIRM H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cluster algebras and categorification - Lecture 3 - Amiot, Claire (Auteur de la Conférence) | CIRM H

Multi angle

In this course I will first introduce cluster algebras associated with a triangulated surface. I will then focus on representation of quivers, and show the strong link between cluster combinatorics and representation theory. The aim will be to explain additive categorification of cluster algebras in this context. All the notions will be illustrated by examples.

13F60 ; 16E35 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Preprojective algebras and Cluster categories - Iyama, Osamu (Auteur de la Conférence) | CIRM H

Multi angle

The preprojective algebra $P$ of a quiver $Q$ has a family of ideals $I_w$ parametrized by elements $w$ in the Coxeter group $W$. For the factor algebra $P_w = P/I_w$, I will discuss tilting and cluster tilting theory for Cohen-Macaulay $P_w$-modules following works by Buan-I-Reiten-Scott, Amiot-Reiten-Todorov and Yuta Kimura.

13F60 ; 16G20 ; 18E30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We generalize the mathematical definition of Coulomb branches of 3-dimensional N = 4 SUSY quiver gauge theories to the cases of symmetrizable ones. We obtain generalized slices in affine Grassmannian of type BCFG as examples of the construction.
This is a joint work with Alex Weekes.

81T13 ; 81T60 ; 16G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Algebraic combinatorics studies combinatorial objects with an algebraic point of view, and conversely. As such, it is also a very fertile ground for experimental mathematics, involving both classical and new algorithms. I will discuss two topics: finite partially ordered sets and their invariants, and tree-indexed polynomials and power series. Finite partially ordered sets are discrete objects, that can be seen as directed graphs, but also possess an interesting representation theory. This leads to many difficult questions about a subtle equivalence relation, namely posets having equivalent derived categories. The theme of tree-indexed series, which can be traced back to Cayley, plays a role in the study of vector fields and ordinary differential equations. It is nowadays better understood in the framework of operads and can be considered as a nonassociative version of the study of alphabets, words and languages. Surprisingly maybe, rooted trees also appear in the study of iterated integrals, stemming out of the usual "integration-by-part" rule. I will describe the corresponding notions of algebras, without diving too much into the theory of operads. On the way, I will discuss some of the involved algorithms and their implementations.[-]
Algebraic combinatorics studies combinatorial objects with an algebraic point of view, and conversely. As such, it is also a very fertile ground for experimental mathematics, involving both classical and new algorithms. I will discuss two topics: finite partially ordered sets and their invariants, and tree-indexed polynomials and power series. Finite partially ordered sets are discrete objects, that can be seen as directed graphs, but also ...[+]

06A06 ; 17A30 ; 18G80 ; 16G20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Tree-indexed polynomials and power series - lecture 2 - Chapoton, Frédéric (Auteur de la Conférence) | CIRM H

Virtualconference

Algebraic combinatorics studies combinatorial objects with an algebraic point of view, and conversely. As such, it is also a very fertile ground for experimental mathematics, involving both classical and new algorithms. I will discuss two topics: finite partially ordered sets and their invariants, and tree-indexed polynomials and power series. Finite partially ordered sets are discrete objects, that can be seen as directed graphs, but also possess an interesting representation theory. This leads to many difficult questions about a subtle equivalence relation, namely posets having equivalent derived categories. The theme of tree-indexed series, which can be traced back to Cayley, plays a role in the study of vector fields and ordinary differential equations. It is nowadays better understood in the framework of operads and can be considered as a nonassociative version of the study of alphabets, words and languages. Surprisingly maybe, rooted trees also appear in the study of iterated integrals, stemming out of the usual "integration-by-part" rule. I will describe the corresponding notions of algebras, without diving too much into the theory of operads. On the way, I will discuss some of the involved algorithms and their implementations.[-]
Algebraic combinatorics studies combinatorial objects with an algebraic point of view, and conversely. As such, it is also a very fertile ground for experimental mathematics, involving both classical and new algorithms. I will discuss two topics: finite partially ordered sets and their invariants, and tree-indexed polynomials and power series. Finite partially ordered sets are discrete objects, that can be seen as directed graphs, but also ...[+]

06A06 ; 16G20 ; 17A30 ; 18G80

Sélection Signaler une erreur