En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 22E46 5 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel.[-]
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...[+]

14D24 ; 22E57 ; 22E46 ; 20G05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel.[-]
Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...[+]

14D24 ; 22E57 ; 22E46 ; 20G05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

The Verlinde formula for Higgs bundles - Andersen, Jorgen Ellegaard (Auteur de la Conférence) | CIRM H

Post-edited

In this talk we will present a Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. We further present a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. We will explain how all these dimensions fit into a one parameter family of 2D TQFT's, encoded in a one parameter family of Frobenius algebras, which we will construct.

14D20 ; 14H60 ; 57R56 ; 81T40 ; 14F05 ; 14H10 ; 22E46 ; 81T45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Mirabolic Satake equivalence - Ginzburg, Victor (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Matrix spherical functions associated to the symmetric pair $(G, K)=$ $\left(\mathrm{SU}(m+2), \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(m))\right.$, having reduced root system of type $\mathrm{BC}_{2}$ are studied. We consider a $K$-representation $\left(\pi, V_{\pi}\right)$ arising from the $\mathrm{U}(2)$-part of $K$, then the induced representation $\operatorname{Ind}_{K}^{G} \pi$ is multiplicity free. The corresponding spherical functions, i.e. $\Phi: G \rightarrow \operatorname{End}\left(V_{\pi}\right)$ satisfying $\Phi\left(k_{1} g k_{2}\right)=\pi\left(k_{1}\right) \Phi(g) \pi\left(k_{2}\right)$ for all $g \in G, k_{1}, k_{2} \in K$, are studied by studying certain leading coefficients. This is done explicitly using the action of the radial part of the Casimir operator on these functions and their leading coefficients. To suitably grouped matrix spherical functions we associate two-variable matrix orthogonal polynomials giving a matrix analogue of Koornwinder's 1970 s two-variable orthogonal polynomials, which are Heckman-Opdam polynomials for $\mathrm{BC}_{2}$. In particular, we find explicit orthogonality relations and the polynomials being eigenfunctions to a second order matrix partial differential operator. This is joint work with Jie Liu (Radboud $\mathrm{U}$ ).[-]
Matrix spherical functions associated to the symmetric pair $(G, K)=$ $\left(\mathrm{SU}(m+2), \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(m))\right.$, having reduced root system of type $\mathrm{BC}_{2}$ are studied. We consider a $K$-representation $\left(\pi, V_{\pi}\right)$ arising from the $\mathrm{U}(2)$-part of $K$, then the induced representation $\operatorname{Ind}_{K}^{G} \pi$ is multiplicity free. The corresponding spherical functions, ...[+]

33C80 ; 33C52 ; 43A90 ; 22E46

Sélection Signaler une erreur