En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 32A60 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a line bundle $L$ over a real Riemann surface, we study the number of real zeros of a random section of $L$. We prove a rarefaction result for sections whose number of real zeros deviates from the expected one.

32A60 ; 60D05 ; 53C65

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The existential closedness problem for a function $f$ is to show that a system of complex polynomials in $2 n$ variables always has solutions in the graph of $f$, except when there is some geometric obstruction. Special cases have be proven for exp, Weierstrass $\wp$ functions, the Klein $j$ function, and other important functions in arithmetic geometry using a variety of techniques. Recently, some special cases have also been studied for well-known solutions of difference equations using different methods. There is potential to expand on these results by adapting the strategies used to prove existential closedness results for functions in arithmetic geometry to work for analytic solutions of difference equations.[-]
The existential closedness problem for a function $f$ is to show that a system of complex polynomials in $2 n$ variables always has solutions in the graph of $f$, except when there is some geometric obstruction. Special cases have be proven for exp, Weierstrass $\wp$ functions, the Klein $j$ function, and other important functions in arithmetic geometry using a variety of techniques. Recently, some special cases have also been studied for ...[+]

30C15 ; 32A60 ; 33B15 ; 03C05 ; 11U09

Sélection Signaler une erreur