En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35J05 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped modes. Associated eigenvalues $\lambda = k^2$ are embedded in the essential spectrum $\mathbb{R}^+$. They can be computed as the real part of the complex spectrum of a non-self-adjoint eigenvalue problem, defined by using the so-called Perfectly Matched Layers (which consist in a complex dilation in the infinite direction) [1].
We show here that it is possible, by modifying in particular the parameters of the Perfectly Matched Layers, to define new complex spectra which include, in addition to trapped modes, frequencies where the potential $V$ is, in some sense, invisible to one incident wave.
Our approach allows to extend to higher dimension the results obtained in [2] on a 1D model problem.[-]
We consider an acoustic waveguide modeled as follows:

$ \left \{\begin {matrix}
\Delta u+k^2(1+V)u=0& in & \Omega= \mathbb{R} \times]0,1[\\
\frac{\partial u}{\partial y}=0& on & \partial \Omega
\end{matrix}\right.$

where $u$ denotes the complex valued pressure, k is the frequency and $V \in L^\infty(\Omega)$ is a compactly supported potential.
It is well-known that they may exist non trivial solutions $u$ in $L^2(\Omega)$, called trapped ...[+]

35Q35 ; 35J05 ; 65N30 ; 41A60 ; 47H10 ; 76Q05 ; 35B40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Eisenstein series are the natural analog of ”plane waves” for hyperbolic manifolds of infinite volume. These non-$L^2$ eigenfunctions of the Laplacian parametrize the continuous spectrum. In this talk we will discuss the structure of nodal sets and domains for surfaces. Upper and lower bounds on the number of intersections of nodal lines with ”generic” real analytic curves will be given, together with similar bounds on the number of nodal domains inside the convex core. The results are based on equidistribution theorems for restriction of Eisenstein series to curves that bear some similarity with the so-called ”QER” results for compact manifolds.[-]
Eisenstein series are the natural analog of ”plane waves” for hyperbolic manifolds of infinite volume. These non-$L^2$ eigenfunctions of the Laplacian parametrize the continuous spectrum. In this talk we will discuss the structure of nodal sets and domains for surfaces. Upper and lower bounds on the number of intersections of nodal lines with ”generic” real analytic curves will be given, together with similar bounds on the number of nodal ...[+]

58J50 ; 58J51 ; 35J05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the stability of the Bossel-Daners inequality - Trombetti, Cristina (Auteur de la Conférence) | CIRM H

Multi angle

The Bossel-Daners is a Faber-Krahn type inequality for the first Laplacian eigenvalue with Robin boundary conditions. We prove a stability result for such inequality.

49Q10 ; 49K20 ; 35P15 ; 35J05 ; 47J30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We show, using symmetrization techniques, that it is possible to prove a comparison principle (we are mainly focused on L1 comparison) between solutions to an elliptic partial differential equation on a smooth bounded set Ω with a rather general boundary condition, and solutions to a suitable related problem defined on a ball having the same volume as Ω. This includes for instance mixed problems.

35J05 ; 35B45 ; 35B06

Sélection Signaler une erreur