En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35P15 10 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Georgi's game of twist - Krejcirik, David (Auteur de la Conférence) | CIRM H

Multi angle

We give an account on the contribution of Georgi Raikov to the spectral theory of quantum waveguides. Inter alia, our joint paper with Werner Kirsch on randomly twisted tubes is presented.

35P15 ; 58J50 ; 81Q10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Emergent anyons in quantum Hall physics - Rougerie, Nicolas (Auteur de la Conférence) | CIRM H

Post-edited

Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I will argue that, under certain circumstances, these become anyons. This is made manifest by the emergence of a particular effective Hamiltonian for their motion. The latter is notoriously hard to solve even in simple cases, and well-controled simplifications are highly desirable. I will discuss a possible mean-field approximation, leading to a one-particle energy functional with self-consistent magnetic field.[-]
Anyons are by definition particles with quantum statistics different from those of bosons and fermions. They can occur only in low dimensions, 2D being the most relevant case for this talk. They have hitherto remained hypothetical, but there is good theoretical evidence that certain quasi-particles occuring in quantum Hall physics should behave as anyons.

I shall consider the case of tracer particles immersed in a so-called Laughlin liquid. I ...[+]

82B10 ; 81S05 ; 35P15 ; 35Q40 ; 35Q55 ; 81V70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Some new inequalities for the Cheeger constant - Fragalà, Ilaria (Auteur de la Conférence) | CIRM H

Post-edited

We discuss some new results for the Cheeger constant in dimension two, including:
- a polygonal version of Faber-Krahn inequality;
- a reverse isoperimetric inequality for convex bodies;
- a Mahler-type inequality in the axisymmetric setting;
- asymptotic behaviour of optimal partition problems.
Based on some recent joint works with D.Bucur,
and for the last part also with B.Velichkov and G.Verzini.

49Q10 ; 52B60 ; 35P15 ; 52A40 ; 52A10 ; 35A15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, we apply our techniques to the more general Robin boundary condition and to a transmission problem which is of significant interest in physical applications.[-]
We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, ...[+]

35J10 ; 35P10 ; 35P15 ; 47A10 ; 81Q12 ; 82D55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Semiclassical methods have shown to be very efficient to get quantitative description of metastability of Langevin dynamics. In this talk we try to explain the main ideas of this approach in both reversible and non-reversible cases.

35P15 ; 35P20 ; 82C31 ; 35Q84 ; 47A75 ; 81Q60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral analysis.[-]
This lecture is devoted to the characterization of convergence rates in some simple equations with mean field nonlinear couplings, like the Keller-Segel and Nernst-Planck systems, Cucker-Smale type models, and the Vlasov-Poisson-Fokker-Planck equation. The key point is the use of Lyapunov functionals adapted to the nonlinear version of the model to produce a functional framework adapted to the asymptotic regime and the corresponding spectral ...[+]

82C40 ; 35H10 ; 35P15 ; 35Q84 ; 35R09 ; 47G20 ; 82C21 ; 82D10 ; 82D37 ; 76P05 ; 35K65 ; 35Q84 ; 46E35 ; 35K55 ; 35Q70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Given a domain D in $C^n$ and a compact subset K of D, the set $A^D_K$ of all restrictions of functions holomorphic on D the modulus of which is bounded by 1 is a compact subset of the Banach space $C(K)$ of continuous functions on K. The sequence $d_m(A^D_K)$ of Kolmogorov m-widths of $A^D_K$ provides a measure of the degree of compactness of the set $A^D_K$ in $C(K)$ and the study of its asymptotics has a long history, essentially going back to Kolmogorov's work on epsilon-entropy of compact sets in the 1950s. In the 1980s Zakharyuta gave, for suitable D and K, the exact asymptotics of these diameters (1), and showed that is implied by a conjecture, now known as Zakharyuta's Conjecture, concerning the approximability of the regularised relative extremal function of K and D by certain pluricomplex Green functions. Zakharyuta's Conjecture was proved by Nivoche in 2004 thus settling (1) at the same time. We shall give a new proof of the asymptotics (1) for D strictly hyperconvex and K nonpluripolar which does not rely on Zakharyuta's Conjecture. Instead we proceed more directly by a two-pronged approach establishing sharp upper and lower bounds for the Kolmogorov widths. The lower bounds follow from concentration results of independent interest for the eigenvalues of a certain family of Toeplitz operators, while the upper bounds follow from an application of the Bergman–Weil formula together with an exhaustion procedure by special holomorphic polyhedral.[-]
Given a domain D in $C^n$ and a compact subset K of D, the set $A^D_K$ of all restrictions of functions holomorphic on D the modulus of which is bounded by 1 is a compact subset of the Banach space $C(K)$ of continuous functions on K. The sequence $d_m(A^D_K)$ of Kolmogorov m-widths of $A^D_K$ provides a measure of the degree of compactness of the set $A^D_K$ in $C(K)$ and the study of its asymptotics has a long history, essentially going back ...[+]

41A46 ; 32A36 ; 32U20 ; 32W20 ; 35P15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the stability of the Bossel-Daners inequality - Trombetti, Cristina (Auteur de la Conférence) | CIRM H

Multi angle

The Bossel-Daners is a Faber-Krahn type inequality for the first Laplacian eigenvalue with Robin boundary conditions. We prove a stability result for such inequality.

49Q10 ; 49K20 ; 35P15 ; 35J05 ; 47J30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Dirac bag model in strong magnetic fields - Raymond, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to two-dimensional Dirac operators on bounded domains coupled to a magnetic field perpendicular to the plane. It will be focused on the MIT bag boundary condition. I will describe recent results about accurate asymptotic estimates for the low-lying (positive and négative) eigenvalues in the limit of a strong magnetic field.
This is a joint work with J.-M. Barbaroux, L. Le Treust and E. Stockmeyer.

35P15 ; 32A70 ; 81Q20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study the survival probability associated with a semiclassical matrix Schrödinger operator that models the predissociation of a general molecule in the Born-Oppenheimer approximation. We show that it is given by its usual time-dependent exponential contribution, up to a reminder term that is small in the semiclassical parameter and for which we find the main contribution. The result applies in any dimension, and in presence of a number of resonances that may tend to infinity as the semiclassical parameter tends to 0.
This is a joint work with Ph. Briet.[-]
We study the survival probability associated with a semiclassical matrix Schrödinger operator that models the predissociation of a general molecule in the Born-Oppenheimer approximation. We show that it is given by its usual time-dependent exponential contribution, up to a reminder term that is small in the semiclassical parameter and for which we find the main contribution. The result applies in any dimension, and in presence of a number of ...[+]

35B34 ; 35P15 ; 35J10 ; 47A75 ; 81Q15

Sélection Signaler une erreur