En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 35Q55 20 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed in the talk.[-]
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed ...[+]

37K10 ; 35C07 ; 35C08 ; 35Q53 ; 35Q55 ; 76B15 ; 76Fxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Soliton resolution for derivative NLS equation - Sulem, Catherine (Auteur de la Conférence) | CIRM H

Multi angle

We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as the correction dispersive term. We use the inverse scattering approach and the nonlinear steepest descent method of Deift and Zhou (1993) revisited by the $\bar{\partial}$-analysis of Dieng-McLaughlin (2008) and complemented by the recent work of Borghese-Jenkins-McLaughlin (2016) on soliton resolution for the focusing nonlinear Schrödinger equation. This is a joint work with R. Jenkins, J. Liu and P. Perry.[-]
We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as ...[+]

35Q55 ; 37K15 ; 37K40 ; 35P25 ; 35A01

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up multi-solitary waves blowing up in infinite time with logarithmic rate.
These special behaviours are due to strong interactions between the waves, in contrast with most previous works on multi-solitary waves of (NLS) where interactions do not affect the general behaviour of each solitary wave.[-]
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up ...[+]

35Q55 ; 76B25 ; 35Q51 ; 35C08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Solitons vs collapses - Kuznetsov, Evgenii (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).[-]
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...[+]

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform analyticity for a large set of initial data, turbulence phenomenon for a dense set of smooth initial data in large Sobolev spaces.
From joint works with Patrick Gérard.[-]
The cubic Szegö equation has been introduced as a toy model for totally non dispersive evolution equations. It turned out that it is a complete integrable Hamiltonian system for which we built a non linear Fourier transform giving an explicit expression of the solutions.
This explicit formula allows to study the dynamics of the solutions. We will explain different aspects of it: almost-periodicity of the solutions in the energy space, uniform ...[+]

35B40 ; 35B15 ; 35Q55 ; 37K15 ; 47B35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Geometric heat flows and caloric gauges - Tataru, Daniel (Auteur de la Conférence) | CIRM H

Multi angle

Choosing favourable gauges is a crucial step in the study of nonlinear geometric dispersive equations. A very successful tool, that has emerged originally in work of Tao on wave maps, is the use of caloric gauges, defined via the corresponding geometric heat flows. The aim of this talk is to describe two such flows and their associated gauges, namely the harmonic heat flow and the Yang-Mills heat flow.

70S15 ; 35Q53 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
It is possible to model dissipation effects subjected by a particle by interactions between the particle and its environment. This seminal idea dates back to Caldeira-Leggett in the '80ies. The specific case of a particle interacting with vibrational degrees of freedom has been thoroughsly investigated by S. De Bièvre and his collaborators. We will go back to these issues in the framework of kinetic equations, and also consider quantum versions of the problem based on couplings with the Schrödinger equation. We are particularly interested in stability issues. We will describe ; through rigorous statements and numerical experiments, analogies and differences with the case of a single classical particle and with the standard coupling with the Poisson equation.[-]
It is possible to model dissipation effects subjected by a particle by interactions between the particle and its environment. This seminal idea dates back to Caldeira-Leggett in the '80ies. The specific case of a particle interacting with vibrational degrees of freedom has been thoroughsly investigated by S. De Bièvre and his collaborators. We will go back to these issues in the framework of kinetic equations, and also consider quantum versions ...[+]

35Q40 ; 35Q51 ; 35Q55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Highly-oscillatory evolution equations: averaging and numerics - Lemou, Mohammed (Auteur de la Conférence) | CIRM H

Virtualconference

Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to capture low frequencies and transition regimes. We present (very briefly) two strategies allowing to remove this obstacle for a large class of evolution problems : a 2-scale method and a micro/macro method. Two different frameworks will be considered : constant frequency, and variable - possibly vanishing - frequency. The result of these approaches is the construction of numerical schemes whose order of accuracy no longer depends on the frequency of oscillation, one then speaks of uniform accuracy (UA) for these schemes. Finally, a new technique for systematizing these two methods will be presented. Its purpose is to reduce the number of inputs that the user must provide to apply the method in practice. In other words, only the values of the field defining the evolution equation (and not its derivatives) are used.These methods have been successfully applied to solve a number of evolution models: non-linear Schrödinger and Klein-Gordon equations, Vlasov-Poisson kinetic equation with strong magnetic field, quantum transport in graphene.[-]
Usual numerical methods become inefficient when they are applied to highly oscillatory evolution problems (order reduction or complete loss of accuracy). The numerical parameters must indeed be adapted to the high frequencies that come into play to correctly capture the desired information, and this induces a prohibitive computational cost. Furthermore, the numerical resolution of averaged models, even at high orders, is not sufficient to ...[+]

65L05 ; 35Q55 ; 37L05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider the nonlinear Schrödinger equation in the partially periodic setting $\mathbb{R}^d\times \mathbb{T}$. We present some recent results obtained in collaboration with N. Tzvetkov concerning the Cauchy theory and the long-time behavior of the solutions.

nonlinear Schrödinger equation - Cauchy theory - scattering

35Q55 ; 35B40 ; 35P25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Inspired by a recent result of Dodson-Luhrmann-Mendelson, who proved almost sure scattering for the energy-critical wave equation with radial data in four dimensions, we establish the analogous result for the Schrödinger equation.
This is joint work with R. Killip and J. Murphy.

35Q55 ; 35L05 ; 35R60

Sélection Signaler une erreur