En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 37F10 21 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this mini course, I will discuss how degenerating sequences of rational maps can be studied using geometric and arithmetic tools. I will also discuss applications to study the boundary of hyperbolic components, length spectrum and rescaling limits, and some differences for sequences vs holomorphic families.

37F05 ; 37F10 ; 37F25 ; 37F31 ; 37P05 ; 37P50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this mini course, I will discuss how degenerating sequences of rational maps can be studied using geometric and arithmetic tools. I will also discuss applications to study the boundary of hyperbolic components, length spectrum and rescaling limits, and some differences for sequences vs holomorphic families.

37F05 ; 37F10 ; 37F25 ; 37F31 ; 37P05 ; 37P50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this mini course, I will discuss how degenerating sequences of rational maps can be studied using geometric and arithmetic tools. I will also discuss applications to study the boundary of hyperbolic components, length spectrum and rescaling limits, and some differences for sequences vs holomorphic families.

37F05 ; 37F10 ; 37F25 ; 37F31 ; 37P50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Unlikely intersections of polynomial orbits - Zieve, Michael (Auteur de la Conférence) | CIRM H

Multi angle

For a polynomial $f(x)$ over a field $L$, and an element $c \in L$, I will discuss the size of the intersection of the orbit $\lbrace f(c),f(f (c)),...\rbrace$ with a prescribed subfield of $L$. I will also discuss the size of the intersection of orbits of two distinct polynomials, and generalizations of these questions to more general maps between varieties.
polynomial decomposition - classification of finite simple groups - Bombieri-Lang conjecture - orbit - dynamical system - unlikely intersections[-]
For a polynomial $f(x)$ over a field $L$, and an element $c \in L$, I will discuss the size of the intersection of the orbit $\lbrace f(c),f(f (c)),...\rbrace$ with a prescribed subfield of $L$. I will also discuss the size of the intersection of orbits of two distinct polynomials, and generalizations of these questions to more general maps between varieties.
polynomial decomposition - classification of finite simple groups - Bombieri-Lang ...[+]

11C08 ; 14Gxx ; 37F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quadratic polynomials - Bartholdi, Laurent (Auteur de la Conférence) | CIRM H

Multi angle

Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and provide insight and structure to complex dynamics: I will explain in particular how the conversion between Hubbard trees and external angles amounts to a change of basis, how the limbs and wakes may be defined in the language of group theory, and present a model of the Mandelbrot set consisting of groups. This is joint work with Dzmitry Dudko and Volodymyr Nekrashevych.[-]
Quadratic polynomials have been investigated since the beginnings of complex dynamics, and are often approached through combinatorial theories such as laminations or Hubbard trees. I will explain how both of these approaches fit in a more algebraic framework: that of iterated monodromy groups. The invariant associated with a quadratic polynomial is a group acting on the infinite binary tree, these groups are interesting in their own right, and ...[+]

37F10 ; 20E08 ; 37B10 ; 37C25 ; 37F45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Polynomial versus transcendental dynamics - Benini, Anna Miriam (Auteur de la Conférence) | CIRM H

Multi angle

In this first lecture we will introduce some the main differences between the dynamics of polynomials and the dynamics of transcendental entire functions: Baker and wandering domains, the new features of the escaping set, new features in the Julia set and some information about parameter spaces for some specific classes of entire functions.

37F10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Transcendental functions with small singular sets - Bishop, Christopher (Auteur de la Conférence) | CIRM H

Virtualconference

I will introduce the Speiser and Eremenko-Lyubich classes of transcendental entire functions and give a brief review of quasiconformal maps and the measurable Riemann mapping theorem. I will then discuss tracts and models for the Eremenko-Lyubich class and state the theorem that all topological tracts can occur in this class. A more limited result for the Speiser class will also be given. I will then discuss some applications of these ideas, focusing on recent work with Kirill Lazebnik (prescribing postsingular orbits of meromorphic functions) and Lasse Rempe (equilateral triangulations of Riemann surfaces).[-]
I will introduce the Speiser and Eremenko-Lyubich classes of transcendental entire functions and give a brief review of quasiconformal maps and the measurable Riemann mapping theorem. I will then discuss tracts and models for the Eremenko-Lyubich class and state the theorem that all topological tracts can occur in this class. A more limited result for the Speiser class will also be given. I will then discuss some applications of these ideas, ...[+]

30D20 ; 37F10 ; 30F99

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The visual sphere of an expanding Thurston map - Bonk, Mario (Auteur de la Conférence) | CIRM H

Virtualconference

Every expanding Thurston map gives rise to a fractal geometry on its underlying 2-sphere. Many dynamical properties of the map are encoded in this fractal, called the 'visual sphere' of the map. An interesting question is how to determine the (Ahlfors regular) conformal dimension of the visual sphere if the map is obstructed. In my talk I will give an introduction to this subject and discuss some recent progress.

37-02 ; 37F10 ; 37F20 ; 30D05 ; 30L10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, $I(f)=\left \{ z\in\mathbb{C}:\left | f^{n}\left ( z \right ) \right | \rightarrow \infty \right \}$ and produced a conjecture with a weak and a strong form. The strong form asks if every point in the escaping set of an arbitrary transcendental entire function can be joined to infinity by a curve in the escaping set.
This was answered in the negative by the 2011 paper of Rottenfusser, Rückert, Rempe, and Schleicher (RRRS) by constructing a tract that produces a function that cannot contain such a curve. In the same paper, it was also shown that if the function was of finite order, that is, log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )$ as $\left | z \right |\rightarrow \infty$, then every point in the escaping set can indeed be connected to infinity by a curve in the escaping set.
The counterexample $f$ used in the RRRS paper has growth such that log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )^{k}$ where $K > 12$ is an arbitrary constant. The question is, can this exponent, K, be decreased and can explicit calculations and counterexamples be performed and constructed that improve on this?[-]
Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, $I(f)=\left \{ z\in\mathbb{C}:\left | f^{n}\left ( z \right ) \right | \rightarrow \infty \right \}$ and ...[+]

37F10 ; 37F15 ; 37F50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Tips of tongues in the double standard family - Buff, Xavier (Auteur de la Conférence) | CIRM H

Virtualconference

We answer a question raised by Misiurewicz and Rodrigues concerning the family of degree 2 circle maps $F_{\lambda}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ defined by
$$
F_{\lambda}(x):=2 x+a+\frac{b}{\pi} \sin (2 \pi x), \text { with } \lambda:=(a, b) \in \mathbb{R} / \mathbb{Z} \times(0,1)
$$
We prove that if $F_{\lambda o}^{\circ n}-$ id has a zero of multiplicity 3 in $\mathbb{R} / \mathbb{Z}$, then there is a system of local coordinates $(\alpha, \beta): W \rightarrow \mathbb{R}^{2}$ defined in a neighborhood $W$ of $\lambda_{0}$, such that $\alpha\left(\lambda_{0}\right)=\beta\left(\lambda_{0}\right)=0$ and $F_{\lambda}^{\circ n}-$ id has a multiple zero with $\lambda \in W$ if and only if $\beta^{3}(\lambda)=\alpha^{2}(\lambda)$. This shows that the tips of tongues are regular cusps. This is joint work with K. Banerjee, J. Canela and A. Epstein.[-]
We answer a question raised by Misiurewicz and Rodrigues concerning the family of degree 2 circle maps $F_{\lambda}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ defined by
$$
F_{\lambda}(x):=2 x+a+\frac{b}{\pi} \sin (2 \pi x), \text { with } \lambda:=(a, b) \in \mathbb{R} / \mathbb{Z} \times(0,1)
$$
We prove that if $F_{\lambda o}^{\circ n}-$ id has a zero of multiplicity 3 in $\mathbb{R} / \mathbb{Z}$, then there is a system of ...[+]

37F10 ; 37F45 ; 37G10

Sélection Signaler une erreur