En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 53D25 9 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Theory of persistence modules is a rapidly developing field lying on the borderline between algebra, geometry and topology. It provides a very useful viewpoint at Morse theory, and at the same time is one of the cornerstones of topological data analysis. In the course I'll review foundations of this theory and focus on its applications to symplectic topology. In parts, the course is based on a recent work with Egor Shelukhin arXiv:1412.8277

37Cxx ; 37Jxx ; 53D25 ; 53D40 ; 53D42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Theory of persistence modules is a rapidly developing field lying on the borderline between algebra, geometry and topology. It provides a very useful viewpoint at Morse theory, and at the same time is one of the cornerstones of topological data analysis. In the course I'll review foundations of this theory and focus on its applications to symplectic topology. In parts, the course is based on a recent work with Egor Shelukhin arXiv:1412.8277

37Cxx ; 37Jxx ; 53D25 ; 53D40 ; 53D42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Theory of persistence modules is a rapidly developing field lying on the borderline between algebra, geometry and topology. It provides a very useful viewpoint at Morse theory, and at the same time is one of the cornerstones of topological data analysis. In the course I'll review foundations of this theory and focus on its applications to symplectic topology. In parts, the course is based on a recent work with Egor Shelukhin arXiv:1412.8277

37Cxx ; 37Jxx ; 53D25 ; 53D40 ; 53D42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Theory of persistence modules is a rapidly developing field lying on the borderline between algebra, geometry and topology. It provides a very useful viewpoint at Morse theory, and at the same time is one of the cornerstones of topological data analysis. In the course I'll review foundations of this theory and focus on its applications to symplectic topology. In parts, the course is based on a recent work with Egor Shelukhin arXiv:1412.8277

37Cxx ; 37Jxx ; 53D25 ; 53D40 ; 53D42

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy's program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy's program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin's idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.[-]
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...[+]

11B83 ; 11K50 ; 37B10 ; 52C23 ; 53D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
For negatively curved Riemannian manifolds, Margulis gave an asymptotic formula for the number of closed geodesics with length below a given threshold. I will describe joint work with Gerhard Knieper and Khadim War in which we obtain the corresponding result for surfaces without conjugate points by first proving uniqueness of the measure of maximal entropy and then following the approach of recent work by Russell Ricks, who established the asymptotic estimates in the setting of CAT(0) geodesic flows.[-]
For negatively curved Riemannian manifolds, Margulis gave an asymptotic formula for the number of closed geodesics with length below a given threshold. I will describe joint work with Gerhard Knieper and Khadim War in which we obtain the corresponding result for surfaces without conjugate points by first proving uniqueness of the measure of maximal entropy and then following the approach of recent work by Russell Ricks, who established the ...[+]

53D25 ; 37D40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
To any algebraic differential equation, one can associate a first-order structure which encodes some of the properties of algebraic integrability and of algebraic independence of its solutions.To describe the structure associated to a given algebraic (nonlinear) differential equation (E), typical questions are:- Is it possible to express the general solutions of (E) from successive resolutions of linear differential equations?- Is it possible to express the general solutions of (E) from successive resolutions of algebraic differential equations of lower order than (E)?- Given distinct initial conditions for (E), under which conditions are the solutions associated to these initial conditions algebraically independent?In my talk, I will discuss in this setting one of the first examples of non-completely integrable Hamiltonian systems: the geodesic motion on an algebraically presented compact Riemannian surface with negative curvature. I will explain a qualitative model-theoretic description of the associated structure based on the global hyperbolic dynamical properties identified by Anosov in the 70's for the geodesic motion in negative curvature.[-]
To any algebraic differential equation, one can associate a first-order structure which encodes some of the properties of algebraic integrability and of algebraic independence of its solutions.To describe the structure associated to a given algebraic (nonlinear) differential equation (E), typical questions are:- Is it possible to express the general solutions of (E) from successive resolutions of linear differential equations?- Is it possible to ...[+]

12H05 ; 37D40 ; 53D25 ; 53C22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Spectrum of geodesic flow on negatively curved manifold - Tsujii, Masato (Auteur de la Conférence) | CIRM H

Multi angle

We consider the one-parameter families of transfer operators for geodesic flows on negatively curved manifolds. We show that the spectra of the generators have some "band structure" parallel to the imaginary axis. As a special case of "semi-classical" transfer operator, we see that the eigenvalues concentrate around the imaginary axis with some gap on the both sides.

37C30 ; 37D40 ; 53D25 ; 81Q50

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

A microlocal toolbox for hyperbolic dynamics - Dyatlov, Semyon (Auteur de la Conférence) | CIRM H

Post-edited

I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between shift to higher frequencies and escaping in the physical space. I will show meromorphic continuation of the resolvent of $X$; the poles, known as Pollicott-Ruelle resonances, describe exponential decay of correlations. As an application, I will prove that the Ruelle zeta function continues meromorphically for flows on non-compact manifolds (the compact case, known as Smale's conjecture, was recently settled by Giulietti-Liverani- Pollicott and a simple microlocal proof was given by Zworski and the speaker). Joint work with Colin Guillarmou.[-]
I will discuss recent applications of microlocal analysis to the study of hyperbolic flows, including geodesic flows on negatively curved manifolds. The key idea is to view the equation $(X + \lambda)u = f$ , where $X$ is the generator of the flow, as a scattering problem. The role of spatial infinity is taken by the infinity in the frequency space. We will concentrate on the case of noncompact manifolds, featuring a delicate interplay between ...[+]

37D50 ; 53D25 ; 37D20 ; 35B34 ; 35P25

Sélection Signaler une erreur