En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 62C10 12 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Bayesian modelling - Mengersen, Kerrie (Auteur de la Conférence) | CIRM H

Post-edited

This tutorial will be a beginner's introduction to Bayesian statistical modelling and analysis. Simple models and computational tools will be described, followed by a discussion about implementing these approaches in practice. A range of case studies will be presented and possible solutions proposed, followed by an open discussion about other ways that these problems could be tackled.

62C10 ; 62F15 ; 62P12 ; 62P10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bayesian computational methods - Robert, Christian P. (Auteur de la Conférence) | CIRM H

Multi angle

This is a short introduction to the many directions of current research in Bayesian computational statistics, from accelerating MCMC algorithms, to using partly deterministic Markov processes like the bouncy particle and the zigzag samplers, to approximating the target or the proposal distributions in such methods. The main illustration focuses on the evaluation of normalising constants and ratios of normalising constants.

62C10 ; 65C60 ; 62F15 ; 65C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Bayesian computation with INLA - Rue, Havard (Auteur de la Conférence) | CIRM H

Multi angle

This talk focuses on the estimation of the distribution of unobserved nodes in large random graphs from the observation of very few edges. These graphs naturally model tournaments involving a large number of players (the nodes) where the ability to win of each player is unknown. The players are only partially observed through discrete valued scores (edges) describing the results of contests between players. In this very sparse setting, we present the first nonasymptotic risk bounds for maximum likelihood estimators (MLE) of the unknown distribution of the nodes. The proof relies on the construction of a graphical model encoding conditional dependencies that is extremely efficient to study n-regular graphs obtained using a round-robin scheduling. This graphical model allows to prove geometric loss of memory properties and deduce the asymptotic behavior of the likelihood function. Following a classical construction in learning theory, the asymptotic likelihood is used to define a measure of performance for the MLE. Risk bounds for the MLE are finally obtained by subgaussian deviation results derived from concentration inequalities for Markov chains applied to our graphical model.[-]
This talk focuses on the estimation of the distribution of unobserved nodes in large random graphs from the observation of very few edges. These graphs naturally model tournaments involving a large number of players (the nodes) where the ability to win of each player is unknown. The players are only partially observed through discrete valued scores (edges) describing the results of contests between players. In this very sparse setting, we ...[+]

62F15 ; 62C10 ; 65C60 ; 65C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Model assessment, selection and averaging - Vehtari, Aki (Auteur de la Conférence) | CIRM H

Multi angle

The tutorial covers cross-validation, and projection predictive approaches for model assessment, selection and inference after model selection and Bayesian stacking for model averaging. The talk is accompanied with R notebooks using rstanarm, bayesplot, loo, and projpred packages.

62C10 ; 62F15 ; 65C60 ; 62M20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Bayesian econometrics in the Big Data Era - Frühwirth-Schnatter, Sylvia (Auteur de la Conférence) | CIRM H

Post-edited

Data mining methods based on finite mixture models are quite common in many areas of applied science, such as marketing, to segment data and to identify subgroups with specific features. Recent work shows that these methods are also useful in micro econometrics to analyze the behavior of workers in labor markets. Since these data are typically available as time series with discrete states, clustering kernels based on Markov chains with group-specific transition matrices are applied to capture both persistence in the individual time series as well as cross-sectional unobserved heterogeneity. Markov chains clustering has been applied to data from the Austrian labor market, (a) to understanding the effect of labor market entry conditions on long-run career developments for male workers (Frühwirth-Schnatter et al., 2012), (b) to study mothers' long-run career patterns after first birth (Frühwirth-Schnatter et al., 2016), and (c) to study the effects of a plant closure on future career developments for male worker (Frühwirth-Schnatter et al., 2018). To capture non- stationary effects for the later study, time-inhomogeneous Markov chains based on time-varying group specific transition matrices are introduced as clustering kernels. For all applications, a mixture-of-experts formulation helps to understand which workers are likely to belong to a particular group. Finally, it will be shown that Markov chain clustering is also useful in a business application in marketing and helps to identify loyal consumers within a customer relationship management (CRM) program.[-]
Data mining methods based on finite mixture models are quite common in many areas of applied science, such as marketing, to segment data and to identify subgroups with specific features. Recent work shows that these methods are also useful in micro econometrics to analyze the behavior of workers in labor markets. Since these data are typically available as time series with discrete states, clustering kernels based on Markov chains with ...[+]

62C10 ; 62M05 ; 62M10 ; 62H30 ; 62P20 ; 62F15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments.[-]
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...[+]

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments.[-]
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...[+]

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments.[-]
This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...[+]

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is a tutorial on Bayesian statistics and machine learning. We will cover what Bayesian learning is, why different subschools of Bayesians arose, and the major classes of algorithms that implement Bayesian learning.

62C10 ; 62F15 ; 65C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is a tutorial on Bayesian statistics and machine learning. We will cover what Bayesian learning is, why different subschools of Bayesians arose, and the major classes of algorithms that implement Bayesian learning.

62C10 ; 62F15 ; 65C05

Sélection Signaler une erreur