Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Bézier representation of homogenous polynomials has little and not the usual geometric meaning if we consider the graph of these polynomials over the sphere. However the graph can be seen as a rational surface and has an ordinary rational Bézier representation. As I will show, both Bézier representations are closely related. Further I consider rational spline constructions for spherical surfaces and other closed manifolds with a projective or hyperbolic structure.
[-]
The Bézier representation of homogenous polynomials has little and not the usual geometric meaning if we consider the graph of these polynomials over the sphere. However the graph can be seen as a rational surface and has an ordinary rational Bézier representation. As I will show, both Bézier representations are closely related. Further I consider rational spline constructions for spherical surfaces and other closed manifolds with a projective ...
[+]
65D17 ; 41A15 ; 65D05 ; 65D07
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk I will discuss recent joint work with Mike McCourt (SigOpt, San Francisco) that has led to progress on the numerically stable computation of certain quantities of interest when working with positive definite kernels to solve scattered data interpolation (or kriging) problems.
In particular, I will draw upon insights from both numerical analysis and modeling with Gaussian processes which will allow us to connect quantities such as, e.g., (deterministic) error estimates in terms of the power function with the kriging variance. This provides new kernel parametrization criteria as well as new ways to compute known criteria such as MLE. Some numerical examples will illustrate the effectiveness of this approach.
[-]
In this talk I will discuss recent joint work with Mike McCourt (SigOpt, San Francisco) that has led to progress on the numerically stable computation of certain quantities of interest when working with positive definite kernels to solve scattered data interpolation (or kriging) problems.
In particular, I will draw upon insights from both numerical analysis and modeling with Gaussian processes which will allow us to connect quantities such as, ...
[+]
65D05 ; 68UXX ; 62H11