En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 65L06 3 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will permit us to describe the corresponding co-arborification process.
Joint work with Charles Curry (NTNU Trondheim), Kurusch Ebrahimi-Fard (NTNU) and Hans Z. Munthe-Kaas (Univ. Bergen).
The two triangles appearing at 24'04" and 25'19'' respectively should be understood as a #.[-]
The Hopf algebra of Lie group integrators has been introduced by H. Munthe-Kaas and W. Wright as a tool to handle Runge-Kutta numerical methods on homogeneous spaces. It is spanned by planar rooted forests, possibly decorated. We will describe a canonical surjective Hopf algebra morphism onto the shuffle Hopf algebra which deserves to be called planar arborification. The space of primitive elements is a free post-Lie algebra, which in turn will ...[+]

81T15 ; 16T05 ; 17D25 ; 65L06 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
When designing high order schemes for solving time-dependent kinetic and related PDEs, we often first develop semi-discrete schemes paying attention only to spatial discretizations and leaving time $t$ continuous. It is then important to have a high order time discretization to main the stability properties of the semi-discrete schemes. In this talk we discuss two classes of high order time discretization, i.e, the strong stability preserving (SSP) time discretization, which preserves strong stability from a stable spatial discretization with Euler forward, and the explicit Runge-Kutta methods, for which strong stability can be proved in many cases for semi-negative linear semi-discrete schemes. Numerical examples will be given to demonstrate the performance of these schemes.[-]
When designing high order schemes for solving time-dependent kinetic and related PDEs, we often first develop semi-discrete schemes paying attention only to spatial discretizations and leaving time $t$ continuous. It is then important to have a high order time discretization to main the stability properties of the semi-discrete schemes. In this talk we discuss two classes of high order time discretization, i.e, the strong stability preserving ...[+]

65M20 ; 65L06

Sélection Signaler une erreur