Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We study repeated bilateral trade where an adaptive σ-smooth adversary generates the valuations of sellers and buyers. We provide a complete characterization of the regret regimes for fixed-price mechanisms under different feedback models in the two cases where the learner can post either the same or different prices to buyers and sellers. We begin by showing that the minimax regret after $T$ rounds is of order $\sqrt{T}$ in the full-feedback scenario. Under partial feedback, any algorithm that has to post the same price to buyers and sellers suffers worst-case linear regret. However, when the learner can post two different prices at each round, we design an algorithm enjoying regret of order $T^{3/4}$ ignoring log factors. We prove that this rate is optimal by presenting a surprising $T^{3/4}$ lower bound, which is the main technical contribution of the paper.
[-]
We study repeated bilateral trade where an adaptive σ-smooth adversary generates the valuations of sellers and buyers. We provide a complete characterization of the regret regimes for fixed-price mechanisms under different feedback models in the two cases where the learner can post either the same or different prices to buyers and sellers. We begin by showing that the minimax regret after $T$ rounds is of order $\sqrt{T}$ in the full-feedback ...
[+]
68W40 ; 91B24 ; 68W25
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'apparition des "Big Data" est en train de modifier profondément notre compréhension du traitement algorithmique de l'information. Le centre de gravité s'est déplacé du calcul vers les données, et le passage à l'échelle est devenu une notion centrale. En particulier, la prise en compte de la localisation géographique des données, du coût de leur déplacement et de leur disponibilité sont devenus des facteurs majeurs de la conception des applications.
Cette nouvelle vision "centrée sur les données" et "consciente de l'échelle" (data-centric, scaling-aware) renouvelle complètement la problématique de l'algorithmique et de la programmation, à la fois dans les outils théoriques utilisés et aussi dans les méthodologies pratiques mises en oeuvre. Cet exposé présentera quelques-uns des aspects ainsi touchés et proposera des pistes pour adapter l'enseignement de l'informatique à ce nouveau paysage.
[-]
L'apparition des "Big Data" est en train de modifier profondément notre compréhension du traitement algorithmique de l'information. Le centre de gravité s'est déplacé du calcul vers les données, et le passage à l'échelle est devenu une notion centrale. En particulier, la prise en compte de la localisation géographique des données, du coût de leur déplacement et de leur disponibilité sont devenus des facteurs majeurs de la conception des ...
[+]
68P05 ; 68T05 ; 68W40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2 y
Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum cellular automata). Nonetheless, quantum walks are powerful tools for quantum computing when correctly applied. I will explain the relationship between quantum walks as models and quantum walks as computational tools, and give some examples of their application in both contexts.
[-]
Quantum walks are widely and successfully used to model diverse physical processes. This leads to computation of the models, to explore their properties. Quantum walks have also been shown to be universal for quantum computing. This is a more subtle result than is often appreciated, since it applies to computations run on qubit-based quantum computers in the single walker case, and physical quantum walkers in the multi-walker case (quantum ...
[+]
68Q12 ; 68W40
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Privacy concerns are becoming a major obstacle to using data in the way that we want. It's often unclear how current regulations should translate into technology, and the changing legal landscape surrounding privacy can cause valuable data to go unused. How can data scientists make use of potentially sensitive data, while providing rigorous privacy guarantees to the individuals who provided data? A growing literature on differential privacy has emerged in the last decade to address some of these concerns. Differential privacy is a parameterized notion of database privacy that gives a mathematically rigorous worst-case bound on the maximum amount of information that can be learned about any one individual's data from the output of a computation. Differential privacy ensures that if a single entry in the database were to be changed, then the algorithm would still have approximately the same distribution over outputs. In this talk, we will see the definition and properties of differential privacy; survey a theoretical toolbox of differentially private algorithms that come with a strong accuracy guarantee; and discuss recent applications of differential privacy in major technology companies and government organizations.
[-]
Privacy concerns are becoming a major obstacle to using data in the way that we want. It's often unclear how current regulations should translate into technology, and the changing legal landscape surrounding privacy can cause valuable data to go unused. How can data scientists make use of potentially sensitive data, while providing rigorous privacy guarantees to the individuals who provided data? A growing literature on differential privacy has ...
[+]
68W40 ; 68-02 ; 62-02 ; 90-02
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider clustering problems that are fundamental when dealing with trajectory and time series data. The Fréchet distance provides a natural way to measure similarity of curves under continuous reparametrizations. Applied to trajectories and time series, it has proven to be very versatile as it allows local non-linear deformations in time and space. Subtrajectory clustering is a variant of the trajectory clustering problem, where the start and endpoints of trajectory patterns within the collected trajectory data are not known in advance. We study this problem in the form of a set cover problem for a given polygonal curve: find the smallest number k of representative curves such that any point on the input curve is contained in a subcurve that has Fréchet distance at most a given r to a representative curve.
[-]
We consider clustering problems that are fundamental when dealing with trajectory and time series data. The Fréchet distance provides a natural way to measure similarity of curves under continuous reparametrizations. Applied to trajectories and time series, it has proven to be very versatile as it allows local non-linear deformations in time and space. Subtrajectory clustering is a variant of the trajectory clustering problem, where the start ...
[+]
68W40 ; 68U05
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Relational tight field bounds are an abstraction of the semantics of data structures. In the presence of appropriate symmetry-breaking predicates, these bounds can be computed automatically and allow to dramatically speed up bug-finding using SAT- solving. In this lecture, after giving an introduction to tight field bounds and symmetry- breaking predicates, I will present a general technique for distributing program analyses. As examples, I will show how the technique allows one to distribute SAT-based bug-finding as well as symbolic execution over complex data types.
[-]
Relational tight field bounds are an abstraction of the semantics of data structures. In the presence of appropriate symmetry-breaking predicates, these bounds can be computed automatically and allow to dramatically speed up bug-finding using SAT- solving. In this lecture, after giving an introduction to tight field bounds and symmetry- breaking predicates, I will present a general technique for distributing program analyses. As examples, I will ...
[+]
68W40 ; 68Q60 ; 68Q10