En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 68W99 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Gradient descent for wide two-layer neural networks - Bach, Francis (Auteur de la Conférence) | CIRM H

Multi angle

Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks. Towards understanding this phenomenon, we analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations. We show that the limits of the gradient flow on exponentially tailed losses can be fully characterized as a max-margin classifier in a certain non-Hilbertian space of functions.[-]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks. Towards understanding this phenomenon, we analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations. We show that the limits of the gradient flow on exponentially tailed losses can be fully characterized as a ...[+]

65K10 ; 65K05 ; 68W99 ; 68T99

Sélection Signaler une erreur