En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 81Q20 6 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Magic angles are a topic of current interest in condensed matter physics and refer to a remarkable theoretical (Bistritzer–MacDonald, 2011) and experimental (Jarillo-Herrero et al, 2018) discovery: two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties, such as superconductivity. In this talk, we shall discuss a simple periodic Hamiltonian describing the chiral limit of twisted bilayer graphene (Tarnopolsky-Kruchkov-Vishwanath, 2019), whose spectral properties are thought to determine which angles are magical. We show that the corresponding eigenfunctions decay exponentially in suitable geometrically determined regions as the angle of twisting decreases, which can be viewed as a form of semiclassical analytic hypoellipticity. This is joint work with Maciej Zworski.[-]
Magic angles are a topic of current interest in condensed matter physics and refer to a remarkable theoretical (Bistritzer–MacDonald, 2011) and experimental (Jarillo-Herrero et al, 2018) discovery: two sheets of graphene twisted by a certain (magic) angle display unusual electronic properties, such as superconductivity. In this talk, we shall discuss a simple periodic Hamiltonian describing the chiral limit of twisted bilayer graphene (...[+]

81Q12 ; 81Q20 ; 47B28 ; 35A27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Certain quantum spectral problems have the remarkable property that the formal perturbative series for the energy spectrum can be used to generate all other terms in the entire trans-series, in a completely constructive manner. I explain a geometric all-orders WKB approach to these perturbative/non-perturbative relations, which reveals surprising connections to number theory and modular forms.

81T15 ; 81T16 ; 81Q20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The quantum Vlasov equation - Mauser, Norbert (Auteur de la Conférence) | CIRM H

Multi angle

We present the Quantum Vlasov or Wigner equation as a "phase space" presentation of quantum mechanics that is close to the classical Vlasov equation, but where the "distribution function" $w(x,v,t)$ will in general have also negative values.
We discuss the relation to the classical Vlasov equation in the semi-classical asymptotics of small Planck's constant, for the linear case [2] and for the nonlinear case where we couple the quantum Vlasov equation to the Poisson equation [4, 3, 5] and [1].
Recently, in some sort of "inverse semiclassical limit" the numerical concept of solving Schrödinger-Poisson as an approximation of Vlasov-Poisson attracted attention in cosmology, which opens a link to the "smoothed Schrödinger/Wigner numerics" of Athanassoulis et al. (e.g. [6]).[-]
We present the Quantum Vlasov or Wigner equation as a "phase space" presentation of quantum mechanics that is close to the classical Vlasov equation, but where the "distribution function" $w(x,v,t)$ will in general have also negative values.
We discuss the relation to the classical Vlasov equation in the semi-classical asymptotics of small Planck's constant, for the linear case [2] and for the nonlinear case where we couple the quantum Vlasov ...[+]

35Q40 ; 35J10 ; 81Q20 ; 81S30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Quantum footprints of symplectic rigidity - Polterovich, Leonid (Auteur de la Conférence) | CIRM H

Multi angle

We discuss interactions between quantum mechanics and symplectic topology including a link between symplectic displacement energy, a fundamental notion of symplectic dynamics, and the quantum speed limit, a universal constraint on the speed of quantum-mechanical processes.
Joint work with Laurent Charles.

81S10 ; 53D50 ; 81Q20 ; 81R30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Peierls substitution for magnetic Bloch bands - Teufel, Stefan (Auteur de la Conférence) | CIRM H

Post-edited

We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a corresponding almost invariant subspace. At leading order, our effective Hamiltonian can be interpreted as the Peierls substitution Hamiltonian widely used in physics for non-magnetic Bloch bands. However, while for non-magnetic Bloch bands the corresponding result is well understood, both on a heuristic and on a rigorous level, for magnetic Bloch bands it is not clear how to even define a Peierls substitution Hamiltonian beyond a formal expression. The source of the difficulty is a topological obstruction: In contrast to the non-magnetic case, magnetic Bloch bundles are generically not trivializable. As a consequence, Peierls substitution Hamiltonians for magnetic Bloch bands turn out to be pseudodifferential operators acting on sections of non-trivial vector bundles over a two-torus, the reduced Brillouin zone. As an application of our results we construct a family of canonical one-band Hamiltonians $H_{\theta=0}$ for magnetic Bloch bands with Chern number $\theta\in\mathbb{Z}$ that generalizes the Hofstadter model $H_{\theta=0}$ for a single non-magnetic Bloch band. It turns out that the spectrum of $H_\theta$ is independent of $\theta$ and thus agrees with the Hofstadter spectrum depicted in his famous (black and white) butterfly. However, the resulting Chern numbers of subbands, corresponding to Hall conductivities, depend on $\theta$ , and thus the models lead to different colored butterflies.
This is joint work with Silvia Freund.[-]
We consider the one-particle Schrödinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\varepsilon x)$ and $A(\varepsilon x)$ , for $\epsilon\ll 1$ . For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schrödinger operator to a co...[+]

81Q20 ; 81V10 ; 82D20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Dirac bag model in strong magnetic fields - Raymond, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

This talk is devoted to two-dimensional Dirac operators on bounded domains coupled to a magnetic field perpendicular to the plane. It will be focused on the MIT bag boundary condition. I will describe recent results about accurate asymptotic estimates for the low-lying (positive and négative) eigenvalues in the limit of a strong magnetic field.
This is a joint work with J.-M. Barbaroux, L. Le Treust and E. Stockmeyer.

35P15 ; 32A70 ; 81Q20

Sélection Signaler une erreur