En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents 93D20 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Stabilization of random kinetic equations - Herty, Michael (Auteur de la Conférence) | CIRM H

Virtualconference

We are interested in the stabilisation of linear kinetic equations for applications in e.g. closed-loop feedback control. Progress has been made in recent years on stabilisation of hyperbolic balance equations using special Lyapunov functions. However, those are not necessarily suitable for the kinetic equation. We present results on kinetic equations under uncertainties and closed loop feedback control.

35B35 ; 93D20 ; 37L45 ; 35B30 ; 35R60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Model predictive and random batch methods for a guiding problem - Zuazua, Enrique (Auteur de la Conférence) | CIRM H

Virtualconference

We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
Classical control methods allow to build coordinated strategies so that the drivers successfully drive the evaders to the desired final destination.
But the computational cost quickly becomes unfeasible when the number of interacting agents is large.
We present a method that combines the Random Batch Method (RBM) and Model Predictive Control (MPC) to significantly reduce the computational cost without compromising the efficiency of the control strategy.
This talk is based on joint work with Dongnam Ko, from the Catholic University of Korea.[-]
We model, simulate and control the guiding problem for a herd of evaders under the action of repulsive drivers. The problem is formulated in an optimal control framework, where the drivers (controls) aim to guide the evaders (states) to a desired region of the Euclidean space.
Classical control methods allow to build coordinated strategies so that the drivers successfully drive the evaders to the desired final destination.
But the computational ...[+]

93D20 ; 93B52 ; 49N75

Sélection Signaler une erreur