This course introduces fundamental concepts in machine learning and presents some classical approaches and algorithms. The scikit-learn library is presented during the practical sessions. The course aims at providing fundamental basics for using machine learning techniques.
Class (4h)
General Introduction to Machine Learning (learning settings, curse of dimensionality, overfitting/underfitting, etc.)
Overview of Supervised Learning: True risk/Empirical risk, loss functions, regularization, sparsity, norms, bias/variance trade-off, PAC generalization bounds, model selection.
Classical machine learning models: Support Vector Machines, Kernel Methods, Decision trees and Random Forests.
An introduction to uncertainty in ML: Gaussian Processes, Quantile Regression with RF
Labs (4h)
Introduction to scikit-learn
Classical Machine learning Models with scikit-learn
Uncertainty in ML
[-]
This course introduces fundamental concepts in machine learning and presents some classical approaches and algorithms. The scikit-learn library is presented during the practical sessions. The course aims at providing fundamental basics for using machine learning techniques.
Class (4h)
General Introduction to Machine Learning (learning settings, curse of dimensionality, overfitting/underfitting, etc.)
Overview of Supervised Learning: True ...
[+]