En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents André, Nicolas 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The post-surgical development of metastases (secondary tumors spread from a primary one) represents the major cause of death from a cancer disease. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression.
In this talk I will first describe a modeling approach that uses data from clinically relevant mouse models of spontaneous metastasis developing after surgical removal of orthotopically implanted primary tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was quantified using bioluminescence. The model was able to fit and predict pre-/post-surgical data at the level of the individual as well as the population. Importantly, our approach also enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a function of primary tumor size, where inter-individual variability was quantified by a key parameter of intrinsic metastatic potential. Critically, our analysis identified a highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence.
In the second part of my talk, I will focus on some very intriguing phenomenon concerning systemic interactions between tumors within the organisms, termed “concomitant resistance”, by which, in the presence of two tumors, one inhibits the growth of the other. This has important clinical consequences as it can lead to post-surgery metastatic acceleration. Based on experimental data involving the simultaneous growth of two tumor implants, we will test biological theories underlying this process and establish a biologically relevant and minimally parameterized mathematical model.
These findings represent a novel use of clinically relevant models to assess the impact of surgery on metastatic potential and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings to maximize patient benefit.[-]
The post-surgical development of metastases (secondary tumors spread from a primary one) represents the major cause of death from a cancer disease. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression.
In this talk I will first describe a modeling approach that uses data from clinically relevant ...[+]

92C50 ; 65C20 ; 92C37

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Non-genetic cancer cell plasticity - Pisco, Angela (Auteur de la Conférence) | CIRM H

Multi angle

Therapy resistance and tumour relapse after drug therapy are commonly explained by Darwinian selection of pre-existing drug-resistant, often stem-like cancer cells resulting from random mutations. However, the ubiquitous nongenetic heterogeneity and plasticity of tumour cell phenotype raises the question: are mutations really necessary and sufficient to promote cell phenotype changes during tumour progression? Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. Cancer therapy inevitably spares some cancer cells, even in the absence of resistant mutants. Accumulating observations suggest that the non-killed, residual tumour cells actively acquire a new phenotype simply by exploiting their developmental potential. These surviving cells are stressed by the cytotoxic treatment, and owing to phenotype plasticity, exhibit a variety of responses. By entering such stem-like, stress-response states, the surviving cells strengthen their capacity to cope with future noxious agents. Considering nongenetic cell state dynamics and the relative ease with which surviving but stressed cells can be tipped into latent attractors of the gene regulatory network provides a foundation for exploring new therapeutic approaches that seek not only to kill cancer cells but also to avoid promoting resistance and relapse that are inherently linked to the attempts to kill them.[-]
Therapy resistance and tumour relapse after drug therapy are commonly explained by Darwinian selection of pre-existing drug-resistant, often stem-like cancer cells resulting from random mutations. However, the ubiquitous nongenetic heterogeneity and plasticity of tumour cell phenotype raises the question: are mutations really necessary and sufficient to promote cell phenotype changes during tumour progression? Tumorigenesis is a dynamic ...[+]

92C50 ; 92C37 ; 92C40

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

From metronomic to... chaotic therapy ? - André, Nicolas (Auteur de la Conférence) | CIRM H

Multi angle

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Dominique Barbolosi - Barbolosi, Dominique (Personne interviewée) | CIRM H

Post-edited

Dominique Barbolosi est professeur à l'Université d'Aix-Marseille. Après l'agrégation, un doctorat de mathématiques et une longue carrière de chercheur, il est devenu un spécialiste mondialement reconnu dans le domaine des applications des mathématiques à la médecine. Ses recherches actuelles concernent l'utilisation des modèles mathématiques afin d'intégrer la complexité biologique et fournir des outils algorithmiques aux médecins pour optimiser l'efficacité des traitements anticancéreux, tout en limitant leurs effets toxiques.[-]
Dominique Barbolosi est professeur à l'Université d'Aix-Marseille. Après l'agrégation, un doctorat de mathématiques et une longue carrière de chercheur, il est devenu un spécialiste mondialement reconnu dans le domaine des applications des mathématiques à la médecine. Ses recherches actuelles concernent l'utilisation des modèles mathématiques afin d'intégrer la complexité biologique et fournir des outils algorithmiques aux médecins pour ...[+]

Sélection Signaler une erreur