En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Simonett, Gieri 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the Navier-Stokes equations on surfaces - Simonett, Gieri (Auteur de la Conférence) | CIRM H

Multi angle

I will consider the motion of an incompressible viscous fluid on compact surfaces without boundary. Local in time well-posedness is established in the framework of $L_{p}$-$L_{q}$ maximal regularity for initial values in critical spaces. It will be shown that the set of equilibria consists exactly of the Killing vector fields. Each equilibrium is stable and any solution starting close to an equilibrium converges at an exponential rate to a (possibly different) equilibrium. In case the surface is two-dimensional, it will be shown that any solution with divergence free initial value in $L_{2}$ exists globally and converges to an equilibrium.[-]
I will consider the motion of an incompressible viscous fluid on compact surfaces without boundary. Local in time well-posedness is established in the framework of $L_{p}$-$L_{q}$ maximal regularity for initial values in critical spaces. It will be shown that the set of equilibria consists exactly of the Killing vector fields. Each equilibrium is stable and any solution starting close to an equilibrium converges at an exponential rate to a ...[+]

35Q35 ; 35Q30 ; 35B40

Sélection Signaler une erreur