Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
One fairly standard version of the Riemann Hypothesis (RH) is that a specific probability density on the real line has a moment generating function (Laplace transform) that as an analytic function on the complex plane has all its zeros pure imaginary. We'll review a series of results that span the period from the 1920's to 2018 concerning a perturbed version of the RH. In that perturbed version, due to Polya, the log of the probability density is modified by a kind of mass term (in quantum field theory language). This gives rise to an implicitly defined real constant known as the de Bruijn-Newman Constant, Lambda. The conjecture and now theorem (Newman 1976, Rodgers and Tau 2018) that Lambda is greater than or equal to zero is complementary to the RH which is equivalent to Lambda less than or equal to zero; The conjecture/theorem is a version of the dictum that the RH, if true, is only barely so. We'll also briefly discuss some connections with quantum field theory and the Lee-Yang circle theorem.
[-]
One fairly standard version of the Riemann Hypothesis (RH) is that a specific probability density on the real line has a moment generating function (Laplace transform) that as an analytic function on the complex plane has all its zeros pure imaginary. We'll review a series of results that span the period from the 1920's to 2018 concerning a perturbed version of the RH. In that perturbed version, due to Polya, the log of the probability density ...
[+]
11M26 ; 60K35