En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Nkonga, Boniface 15 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] is an ubiquitous theoretical framework for lowfrequency fusion plasma description. In this work we are using the field theory formulation of the modern gyrokinetics [1]. The main attention is focussed on derivation of the momentum conservation law via the Noether method, which allows to connect symmetries of the system with conserved quantities by means of the infinitesimal space-time translations and rotations.
Such an approach allows to consistently keep the gyrokinetic dynamical reduction effects into account and therefore leads towards a complete momentum transport equation.
Elucidating the role of the gyrokinetic polarization is one of the main results of this work. We show that the terms resulting from each step of the dynamical reduction (guiding-center and gyrocenter) should be consistently taken into account in order to establish physical meaning of the transported quantity. The present work [2] generalizes previous result obtained in [4] by taking into the account purely geometrical contributions into the radial polarization.[-]
The momentum transport in a fusion device such as a tokamak has been in a scope of the interest during last decade. Indeed, it is tightly related to the plasma rotation and therefore its stabilization, which in its turn is essential for the confinement improvement. The intrinsic rotation, i.e. the part of the rotation occurring without any external torque is one of the possible sources of plasma stabilization.
The modern gyrokinetic theory [3] ...[+]

82D10 ; 82C40 ; 35L65 ; 35Q83 ; 70S10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these initial data. The same is done for the interfacial pressure $P_I$. Interfacial variables $u_I$ and $P_I$ are thus local constants in the Riemann problem. Thanks to this property there is no difficulty to express the non-conservative system of partial differential equations in local conservative form. With the conventional HLLC wave speed estimates and the extra interfacial speed $u_I$, the four-waves Riemann problem for each phase is solved following the same strategy as in Toro et al. (1994) for the Euler equations. As $u_I$ and $P_I$ are functions only of the Riemann problem initial data, the two-phase Riemann problem consists in two independent Riemann problems with 4 waves only. Moreover, it is shown that these solvers are entropy producing. The method is easy to code and very robust. Its accuracy is validated against exact solutions as well as experimental data.[-]
A simple, robust and accurate HLLC-type Riemann solver for two-phase 7-equation type models is built. It involves 4 waves per phase, i.e. the three conventional right- and left-facing and contact waves, augmented by an extra "interfacial" wave. Inspired by the Discrete Equations Method (Abgrall and Saurel, 2003), this wave speed $u_I$ is assumed function only of the piecewise constant initial data. Therefore it is computed easily from these ...[+]

76Mxx ; 76TXX

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy identity and that existence of a weak solution can be proved. Some of these models will be detailed.
The second result is perhaps more important for applications. It provides understanding on the fact the the growth rate of linear instabilities of the initial (non reduced) model is lower bounded by the growth rate of linear instabilities of the reduced model.
This work has been done with Rémy Sart.[-]
Reduced MHD models in Tokamak geometry are convenient simplifications of full MHD and are fundamental for the numerical simulation of MHD stability in Tokamaks. This presentation will address the mathematical well-posedness and the justification of the such models.
The first result is a systematic design of hierachies of well-posed reduced MHD models. Here well-posed means that the system is endowed with a physically sound energy ...[+]

76W05 ; 35L65 ; 65M60 ; 35Q30

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - Boltzmann equation - fluid models - hybrid methods[-]
We construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.
PDE - numerical methods - ...[+]

35Q35 ; 65N08 ; 65N22

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
In this third lecture the ideal and extended magnetohydrodynamics (MHD) fluid moment descriptions of magnetized plasmas are discussed first. The ideal MHD equilibrium in a toroidally axisymmetric tokamak plasma is discussed next. Then, the collisional viscous force closure moments and their effects on the parallel Ohm's law and poloidal flows in the extended MHD model of tokamak plasmas are discussed. Finally, the species fluid moment equations are transformed to magnetic flux coordinates, averaged over a flux surface and used to obtain the tokamak plasma transport equations. These equations describe the transport of the plasma electron density, plasma toroidal angular momentum and pressure of the electron and ion species "radially" across the nested tokamak toroidal magnetic flux surfaces.[-]
In this third lecture the ideal and extended magnetohydrodynamics (MHD) fluid moment descriptions of magnetized plasmas are discussed first. The ideal MHD equilibrium in a toroidally axisymmetric tokamak plasma is discussed next. Then, the collisional viscous force closure moments and their effects on the parallel Ohm's law and poloidal flows in the extended MHD model of tokamak plasmas are discussed. Finally, the species fluid moment equations ...[+]

76X05 ; 82C70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
In this final, fourth lecture the many effects on radial tokamak plasma transport caused by various physical processes are noted first: transients, collision- and microturbulence-induced transport, sources and sinks, and small three-dimensional (3-D) magnetic field perturbations. The main focus of this lecture is on the various effects of small 3-D fields on plasma transport which is a subject that has come of age over the past decade. Finally, the major themes of these CEMRACS 2014 lectures are summarized and a general framework for combining extended MHD, hybrid kinetic/fluid and transport models of tokamak plasma behavior into unified descriptions and numerical simulations that may be able to provide a "predictive capability" for ITER plasmas is presented.[-]
In this final, fourth lecture the many effects on radial tokamak plasma transport caused by various physical processes are noted first: transients, collision- and microturbulence-induced transport, sources and sinks, and small three-dimensional (3-D) magnetic field perturbations. The main focus of this lecture is on the various effects of small 3-D fields on plasma transport which is a subject that has come of age over the past decade. Finally, ...[+]

76X05 ; 82C70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This series of 4 lectures discusses the key physical processes in fusion-relevant plasmas, the equations used to describe them, and the interrelationships between them. The focus is on developing comprehensive equations and models for magnetically-confined fusion plasmas on a hierarchy of time scales. The relevant plasma equations for inertial fusion are also briefly mentioned. The pedagogical development begins with the very short time scale microscopic charged-particle-based Coulomb collision processes in a plasma. This microscopic description is then used to develop a comprehensive plasma kinetic equation, fluid moment, magnetohydrodynamic (MHD) and hybrid kinetic/fluid moment plasma descriptions, and finally the long time scale equations for plasma transport across the confining magnetic field. The present grand challenge in magnetic fusion is to develop a "predictive capability" for deuteron-triton (D-T) burning plasmas in ITER (http://www.iter.org). Individual .pdf files of the final, corrected sets of viewgraphs are available via http://homepages.cae.wisc.edu/~callen/plasmas.

This initial lecture first discusses the wide range of characteristic length and time scales involved in modeling fusion plasmas. Next, the Coulomb scattering of a charged test particle's velocity and the differences between the ensemble-averaged electron and ion collisional scattering and relaxation rates are discussed. Then, the mathematical properties of these collisional scattering processes are used to develop a Fokker-Planck collision operator. Finally, a general plasma kinetic equation (PKE) is developed and its general properties discussed.[-]
This series of 4 lectures discusses the key physical processes in fusion-relevant plasmas, the equations used to describe them, and the interrelationships between them. The focus is on developing comprehensive equations and models for magnetically-confined fusion plasmas on a hierarchy of time scales. The relevant plasma equations for inertial fusion are also briefly mentioned. The pedagogical development begins with the very short time scale ...[+]

76X05 ; 82C70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this second lecture a Green function solution of the perturbed plasma kinetic equation (PKE) that determines the effects of Coulomb collisional scattering on linear Landau damping is presented first. This is followed by the development of the fluid moment equations obtained from the PKE. An extended Chapman-Enskog-type approach is used to determine the needed collisional and fluid moment closures for this comprehensive, hybrid kinetic/fluid model. Finally, closures for collision-dominated unmagnetized and magnetized plasmas are presented and their limitations discussed.[-]
In this second lecture a Green function solution of the perturbed plasma kinetic equation (PKE) that determines the effects of Coulomb collisional scattering on linear Landau damping is presented first. This is followed by the development of the fluid moment equations obtained from the PKE. An extended Chapman-Enskog-type approach is used to determine the needed collisional and fluid moment closures for this comprehensive, hybrid kinetic/fluid ...[+]

76X05 ; 82C70

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

High magnetic field averaged models for plasma physics - Bostan, Mihaï (Auteur de la Conférence) | CIRM H

Multi angle

The subject matter of this talk concerns the derivation of the Finite Larmor radius approximation, when collisions are taken into account.
Several studies are performed, corresponding to different collision kernels. The main motivation consists in computing the gyro-average of the Fokker-Planck- Landau operator, which plays a major role in plasma physics. We determine its equilibria and derive the fluid approximation around them, leading to a new Euler type system of conservation laws.
The main technique applies for studying highly anisotropic parabolic problems, for example the heat equation with disparate diffusion coeffcients with respect to the parallel and perpendicular directions.[-]
The subject matter of this talk concerns the derivation of the Finite Larmor radius approximation, when collisions are taken into account.
Several studies are performed, corresponding to different collision kernels. The main motivation consists in computing the gyro-average of the Fokker-Planck- Landau operator, which plays a major role in plasma physics. We determine its equilibria and derive the fluid approximation around them, leading to a ...[+]

82D10 ; 76X05

Sélection Signaler une erreur