En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Hubert, Pascal 25 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, I will discuss results obtained with Yvan Dynnikov, Paul Mercat, Olga Paris-Romaskevich and Sasha Skripchenko. Novikov's conjecture for foliations states that the restriction of a linear foliation to a triply periodic surface is generically periodic or integrable (leaves stay at bounded distance from a line). I will explain some results on families of interval exchange transformations with flips. This approach gives a partial solution to the conjecture in a non-trivial case.[-]
In this talk, I will discuss results obtained with Yvan Dynnikov, Paul Mercat, Olga Paris-Romaskevich and Sasha Skripchenko. Novikov's conjecture for foliations states that the restriction of a linear foliation to a triply periodic surface is generically periodic or integrable (leaves stay at bounded distance from a line). I will explain some results on families of interval exchange transformations with flips. This approach gives a partial ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We give a necessary and sufficient condition for the existence of infinitely many non-arithmetic Teichmuller curves in a stratum of abelian differentials. This is joint work with Simion Filip and Alex Wright.

30F30 ; 32G15 ; 32G20 ; 14D07 ; 37D25

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space.[-]
Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the ...[+]

11G05 ; 37A45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary decomposition results involving uniformity norms, and equidistribution results on nilmanifolds.[-]
The Chowla conjecture asserts that the signs of the Liouville function are distributed randomly on the integers. Reinterpreted in the language of ergodic theory this conjecture asserts that the Liouville dynamical system is a Bernoulli system. We prove that ergodicity of the Liouville system implies the Chowla conjecture. Our argument has an ergodic flavor and combines recent results in analytic number theory, finitistic and infinitary ...[+]

11N60 ; 11B30 ; 11N37 ; 37A45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The diameter of the symmetric group: ideas and tools - Helfgott, Harald (Auteur de la Conférence) | CIRM H

Multi angle

Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, Helfgott and Seress gave a quasipolynomial bound, namely, $O\left (e^{(log n)^{4+\epsilon}}\right )$. We will discuss a recent, much simplified version of the proof.[-]
Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$.
It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, ...[+]

20B05 ; 05C25 ; 20B30 ; 20F69 ; 20D60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Primes with missing digits - Maynard, James (Auteur de la Conférence) | CIRM H

Multi angle

We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, combinatorial geometry as well as tools from analytic number theory.[-]
We will talk about recent work showing there are infinitely many primes with no $7$ in their decimal expansion. (And similarly with $7$ replaced by any other digit.) This shows the existence of primes in a 'thin' set of numbers (sets which contain at most $X^{1-c}$ elements less than $X$) which is typically vey difficult.
The proof relies on a fun mixture of tools including Fourier analysis, Markov chains, Diophantine approximation, com...[+]

11N05 ; 11A63

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

The unsolved problems of Halmos - Weiss, Benjamin (Auteur de la Conférence) | CIRM H

Multi angle

Sixty years ago Paul Halmos concluded his Lectures on Ergodic Theory with a chapter Unsolved Problems which contained a list of ten problems. I will discuss some of these and some of the work that has been done on them. He considered actions of $\mathbb{Z}$ but I will also widen the scope to actions of general countable groups.

37Axx ; 37B05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Interview at CIRM: Peter Sarnak - Sarnak, Peter (Personne interviewée) | CIRM H

Post-edited

Peter Sarnak is a South African-born mathematician with dual South-African and American nationalities. He has been Eugene Higgins Professor of Mathematics at Princeton University since 2002, succeeding Andrew Wiles, and is an editor of the Annals of Mathematics. He is known for his work in analytic number theory. Sarnak is also on the permanent faculty at the School of Mathematics of the Institute for Advanced Study. He also sits on the Board of Adjudicators and the selection committee for the Mathematics award, given under the auspices of the Shaw Prize.

Sarnak graduated University of the Witwatersrand (B.Sc. 1975) and Stanford University (Ph.D. 1980), under the direction of Paul Cohen. Sarnak's highly cited work (with A. Lubotzky and R. Philips) applied deep results in number theory to Ramanujan graphs, with connections to combinatorics and computer science.

Peter Sarnak was awarded the Polya Prize of Society of Industrial & Applied Mathematics in 1998, the Ostrowski Prize in 2001, the Levi L. Conant Prize in 2003, the Frank Nelson Cole Prize in Number Theory in 2005 and a Lester R. Ford Award in 2012. He is the recipient of the 2014 Wolf Prize in Mathematics.

He was also elected as member of the National Academy of Sciences (USA) and Fellow of the Royal Society (UK) in 2002. He was awarded an honorary doctorate by the Hebrew University of Jerusalem in 2010. He was also awarded an honorary doctorate by the University of Chicago in 2015.[-]
Peter Sarnak is a South African-born mathematician with dual South-African and American nationalities. He has been Eugene Higgins Professor of Mathematics at Princeton University since 2002, succeeding Andrew Wiles, and is an editor of the Annals of Mathematics. He is known for his work in analytic number theory. Sarnak is also on the permanent faculty at the School of Mathematics of the Institute for Advanced Study. He also sits on the Board of ...[+]

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in each moduli space. The proofs use recent results in Teichmüller dynamics, especially joint work with Eskin and Filip on the Kontsevich-Zorich cocycle. Joint work with McMullen and Mukamel as well as Eskin, McMullen and Mukamel shows that exotic examples of "higher dimensional Teichmüller discs" do exist.[-]
We consider "higher dimensional Teichmüller discs", by which we mean complex submanifolds of Teichmüller space that contain the Teichmüller disc joining any two of its points. We prove results in the higher dimensional setting that are opposite to the one dimensional behavior: every "higher dimensional Teichmüller disc" covers a "higher dimensional Teichmüller curve" and there are only finitely many "higher dimensional Teichmüller curves" in ...[+]

30F60 ; 32G15

Sélection Signaler une erreur