En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Delarue, François 38 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion of companies that default at the same time. From a mathematical point of view, the coefficient of proportionality, denoted by a, is of great importance as the resulting system is known to blow-up when a takes large values, a blow-up meaning that a macroscopic proportion of companies may default at the same time. In the current talk, we focus on the complementary regime and prove that existence and uniqueness hold in arbitrary time without any blow-up when the excitatory parameter is small enough.[-]
Inspired by modeling in neurosciences, we here discuss the well-posedness of a networked integrate-and-fire model describing an infinite population of companies which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type as, at any time, the debt of a company increases when some of the others default: precisely, the loss it receives is proportional to the instantaneous proportion ...[+]

35K60 ; 82C31 ; 92B20

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

An introduction to BSDE - Imkeller, Peter (Auteur de la Conférence) | CIRM H

Multi angle

Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal investment problem for a financial agent whose income is partly affected by market external risk. We then present the basics of existence and uniqueness theory for solutions to BSDE the coefficients of which satisfy global Lipschitz conditions.[-]
Backward stochastic differential equations have been a very successful and active tool for stochastic finance and insurance for some decades. More generally they serve as a central method in applications of control theory in many areas. We introduce BSDE by looking at a simple utility optimization problem in financial stochastics. We shall derive an important class of BSDE by applying the martingale optimality principle to solve an optimal ...[+]

91B24 ; 60H15 ; 60H10 ; 91G80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the discrete investment stages. Working in a continuous-time diffusion framework, we characterize and analyze the resulting Nash equilibrium and game values. Our analysis quantifies the dynamic competition effects and yields insight into dynamic preemption and over-investment in a general asymmetric setting. A case-study considering the impact of fluctuating emission costs on power producers investing in nuclear and coal-fired plants is also presented.[-]
We consider competitive capacity investment for a duopoly of two distinct producers. The producers are exposed to stochastically fluctuating costs and interact through aggregate supply. Capacity expansion is irreversible and modeled in terms of timing strategies characterized through threshold rules. Because the impact of changing costs on the producers is asymmetric, we are led to a nonzero-sum timing game describing the transitions among the ...[+]

93E20 ; 91B38 ; 91A80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Cubature methods and applications - Crisan, Dan (Auteur de la Conférence) | CIRM H

Multi angle

The talk will have two parts: In the first part, I will go over some of the basic feature of cubature methods for approximating solutions of classical SDEs and how they can be adapted to solve Backward SDEs. In the second part, I will introduce some recent results on the use of cubature method for approximating solutions of McKean-Vlasov SDEs.

65C30 ; 60H10 ; 34F05 ; 60H35 ; 91G60

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

On the interplay between kinetic theory and game theory - Degond, Pierre (Auteur de la Conférence) | CIRM H

Multi angle

We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be given.[-]
We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be ...[+]

91B80 ; 35Q82 ; 35Q91

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Branching for PDEs - Warin, Xavier (Auteur de la Conférence) | CIRM H

Multi angle

Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities polynomial in u and Du with convergence results. At last we give some numerical schemes to solve the semi-linear case and even the full non linear case but currently without convergence results.[-]
Branching methods have recently been developed to solve some PDEs. Starting from Mckean formulation, we give the initial branching method to solve the KPP equation. We then give a formulation to solve non linear equation with a non linearity polynomial in the value function u. The methodology is extended for general non linearities in the value function u. Then we develop the methodology to solve non linear equation with non linearities ...[+]

60H15 ; 35R60 ; 60J80

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Optimal vector quantization has been originally introduced in Signal processing as a discretization method of random signals, leading to an optimal trade-off between the speed of transmission and the quality of the transmitted signal. In machine learning, similar methods applied to a dataset are the historical core of unsupervised classification methods known as “clustering”. In both case it appears as an optimal way to produce a set of weighted prototypes (or codebook) which makes up a kind of skeleton of a dataset, a signal and more generally, from a mathematical point of view, of a probability distribution.
Quantization has encountered in recent years a renewed interest in various application fields like automatic classification, learning algorithms, optimal stopping and stochastic control, Backward SDEs and more generally numerical probability. In all these various applications, practical implementation of such clustering/quantization methods more or less rely on two procedures (and their countless variants): the Competitive Learning Vector Quantization $(CLV Q)$ which appears as a stochastic gradient descent derived from the so-called distortion potential and the (randomized) Lloyd's procedure (also known as k- means algorithm, nu ees dynamiques) which is but a fixed point search procedure. Batch version of those procedures can also be implemented when dealing with a dataset (or more generally a discrete distribution).
In a more formal form, if is probability distribution on an Euclidean space $\mathbb{R}^d$, the optimal quantization problem at level $N$ boils down to exhibiting an $N$-tuple $(x_{1}^{*}, . . . , x_{N}^{*})$, solution to

argmin$_{(x1,\dotsb,x_N)\epsilon(\mathbb{R}^d)^N} \int_{\mathbb{R}^d 1\le i\le N} \min |x_i-\xi|^2 \mu(d\xi)$

and its distribution i.e. the weights $(\mu(C(x_{i}^{*}))_{1\le i\le N}$ where $(C(x_{i}^{*})$ is a (Borel) partition of $\mathbb{R}^d$ satisfying

$C(x_{i}^{*})\subset \lbrace\xi\epsilon\mathbb{R}^d :|x_{i}^{*} -\xi|\le_{1\le j\le N} \min |x_{j}^{*}-\xi|\rbrace$.

To produce an unsupervised classification (or clustering) of a (large) dataset $(\xi_k)_{1\le k\le n}$, one considers its empirical measure

$\mu=\frac{1}{n}\sum_{k=1}^{n}\delta_{\xi k}$

whereas in numerical probability $\mu = \mathcal{L}(X)$ where $X$ is an $\mathbb{R}^d$-valued simulatable random vector. In both situations, $CLV Q$ and Lloyd's procedures rely on massive sampling of the distribution $\mu$.
As for clustering, the classification into $N$ clusters is produced by the partition of the dataset induced by the Voronoi cells $C(x_{i}^{*}), i = 1, \dotsb, N$ of the optimal quantizer.
In this second case, which is of interest for solving non linear problems like Optimal stopping problems (variational inequalities in terms of PDEs) or Stochastic control problems (HJB equations) in medium dimensions, the idea is to produce a quantization tree optimally fitting the dynamics of (a time discretization) of the underlying structure process.
We will explore (briefly) this vast panorama with a focus on the algorithmic aspects where few theoretical results coexist with many heuristics in a burgeoning literature. We will present few simulations in two dimensions.[-]
Optimal vector quantization has been originally introduced in Signal processing as a discretization method of random signals, leading to an optimal trade-off between the speed of transmission and the quality of the transmitted signal. In machine learning, similar methods applied to a dataset are the historical core of unsupervised classification methods known as “clustering”. In both case it appears as an optimal way to produce a set of weighted ...[+]

62L20 ; 93E25 ; 94A12 ; 91G60 ; 65C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Model-free control and deep learning - Bellemare, Marc (Auteur de la Conférence) | CIRM H

Multi angle

In this talk I will present some recent developments in model-free reinforcement learning applied to large state spaces, with an emphasis on deep learning and its role in estimating action-value functions. The talk will cover a variety of model-free algorithms, including variations on Q-Learning, and some of the main techniques that make the approach practical. I will illustrate the usefulness of these methods with examples drawn from the Arcade Learning Environment, the popular set of Atari 2600 benchmark domains.[-]
In this talk I will present some recent developments in model-free reinforcement learning applied to large state spaces, with an emphasis on deep learning and its role in estimating action-value functions. The talk will cover a variety of model-free algorithms, including variations on Q-Learning, and some of the main techniques that make the approach practical. I will illustrate the usefulness of these methods with examples drawn from the Arcade ...[+]

68Q32 ; 91A25 ; 68T05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We will first recall, for a general audience, the use of Monte Carlo and Multi-level Monte Carlo methods in the context of Uncertainty Quantification. Then we will discuss the recently developed Adaptive Multilevel Monte Carlo (MLMC) Methods for (i) It Stochastic Differential Equations, (ii) Stochastic Reaction Networks modeled by Pure Jump Markov Processes and (iii) Partial Differential Equations with random inputs. In this context, the notion of adaptivity includes several aspects such as mesh refinements based on either a priori or a posteriori error estimates, the local choice of different time stepping methods and the selection of the total number of levels and the number of samples at different levels. Our Adaptive MLMC estimator uses a hierarchy of adaptively refined, non-uniform time discretizations, and, as such, it may be considered a generalization of the uniform discretization MLMC method introduced independently by M. Giles and S. Heinrich. In particular, we show that our adaptive MLMC algorithms are asymptotically accurate and have the correct complexity with an improved control of the multiplicative constant factor in the asymptotic analysis. In this context, we developed novel techniques for estimation of parameters needed in our MLMC algorithms, such as the variance of the difference between consecutive approximations. These techniques take particular care of the deepest levels, where for efficiency reasons only few realizations are available to produce essential estimates. Moreover, we show the asymptotic normality of the statistical error in the MLMC estimator, justifying in this way our error estimate that allows prescribing both the required accuracy and confidence level in the final result. We present several examples to illustrate the above results and the corresponding computational savings.[-]
We will first recall, for a general audience, the use of Monte Carlo and Multi-level Monte Carlo methods in the context of Uncertainty Quantification. Then we will discuss the recently developed Adaptive Multilevel Monte Carlo (MLMC) Methods for (i) It Stochastic Differential Equations, (ii) Stochastic Reaction Networks modeled by Pure Jump Markov Processes and (iii) Partial Differential Equations with random inputs. In this context, the notion ...[+]

65C30 ; 65C05 ; 60H15 ; 60H35 ; 35R60

Sélection Signaler une erreur