En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents De la Bretèche, Régis 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Towards ternary Goldbach's conjecture - Helfgott, Harald (Auteur de la Conférence) | CIRM H

Multi angle

The ternary Goldbach conjecture (1742) asserts that every odd number greater than $5$ can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant $C$ satisfies the conjecture. In the years since then, there has been a succession of results reducing $C$, but only to levels much too high for a verification by computer up to $C$ to be possible $(C>10^{1300})$. (Works by Ramare and Tao have solved the corresponding problems for six and five prime numbers instead of three.) My recent work proves the conjecture. We will go over the main ideas of the proof.
ternary Goldbach conjecture - sums of primes - circle method[-]
The ternary Goldbach conjecture (1742) asserts that every odd number greater than $5$ can be written as the sum of three prime numbers. Following the pioneering work of Hardy and Littlewood, Vinogradov proved (1937) that every odd number larger than a constant $C$ satisfies the conjecture. In the years since then, there has been a succession of results reducing $C$, but only to levels much too high for a verification by computer up to $C$ to be ...[+]

11P32 ; 11N35

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
This is the second part of the talk of Daniel Fiorilli. We will explain the proofs of our theorem about the moments of moments of primes in arithmetic progressions.

11N05 ; 11M26 ; 11N13

Sélection Signaler une erreur