En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Luxburg, Ulrike von 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Statistics on graphs and networks (II) - Luxburg, Ulrike von (Auteur de la Conférence) | CIRM

Multi angle

Consider a sample of points drawn from some unknown density on $R^d$. Assume the only information we have about the sample are the $k$-nearest neighbor relationships: we know who is among the $k$-nearest neighors of whom, but we do not know any distances between points, nor the point coordinates themselves. We prove that as the sample size goes to infinty, it is possible to reconstruct the underlying density p and the distances of the points (up to a multiplicative constant).

$k$-nearest neighbor graph - random geometric graph - ordinal embedding[-]
Consider a sample of points drawn from some unknown density on $R^d$. Assume the only information we have about the sample are the $k$-nearest neighbor relationships: we know who is among the $k$-nearest neighors of whom, but we do not know any distances between points, nor the point coordinates themselves. We prove that as the sample size goes to infinty, it is possible to reconstruct the underlying density p and the distances of the points (up ...[+]

62G07 ; 62G30 ; 68R10

Sélection Signaler une erreur