En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Pardon, John 2 results

Filter
Select: All / None
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Hilbert's Fifth Problem asks whether every topological group which is a manifold is in fact a (smooth!) Lie group; this was solved in the affirmative by Gleason and Montgomery-Zippin. A stronger conjecture is that a locally compact topological group which acts faithfully on a manifold must be a Lie group. This is the Hilbert--Smith Conjecture, which in full generality is still wide open. It is known, however (as a corollary to the work of Gleason and Montgomery-Zippin) that it suffices to rule out the case of the additive group of p-adic integers acting faithfully on a manifold. I will present a solution in dimension three.[-]
Hilbert's Fifth Problem asks whether every topological group which is a manifold is in fact a (smooth!) Lie group; this was solved in the affirmative by Gleason and Montgomery-Zippin. A stronger conjecture is that a locally compact topological group which acts faithfully on a manifold must be a Lie group. This is the Hilbert--Smith Conjecture, which in full generality is still wide open. It is known, however (as a corollary to the work of ...[+]

57N10

Bookmarks Report an error
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y

Virtual fundamental cycles and contact homology - Pardon, John (Author of the conference) | CIRM H

Post-edited

I will discuss work in progress aimed towards defining contact homology using "virtual" holomorphic curve counting techniques.

37J10 ; 53D35 ; 53D40 ; 53D42 ; 53D45 ; 57R17

Bookmarks Report an error