En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Bettinelli, Jérémie 10 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi.[-]
La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...[+]

60D05 ; 60F05 ; 52A22 ; 60G55

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Noise sensitivity for random walks - Benjamini, Itai (Auteur de la Conférence) | CIRM H

Multi angle

We will introduce a notion of noise sensitivity for random walk on finitely generated infinite groups and discuss it.
Joint work with Jeremie Brieussel.

51Fxx

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 1/3 - Kortchemski, Igor (Auteur de la Conférence) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 2/3 - Kortchemski, Igor (Auteur de la Conférence) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Condensation in random trees 3/3 - Kortchemski, Igor (Auteur de la Conférence) | CIRM H

Multi angle

We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms for instance connected with data allocation), combinatorics (trees are combinatorial objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for instance in connection with random maps as we will see below) and in probability theory (where trees describe the genealogical structure of branching processes, fragmentation processes, etc.). We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary way), whose offspring distribution is subcritical and is regularly varying. The main tool is to code these trees by integer-valued random walks with negative drift, conditioned on a late return to the origin. The study of such random walks, which is of independent interest, reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson trees.
Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks under a conditioning involving positivity constraints.
Section 4 contains exercises to manipulate connections between BGW trees and random walks, and to study ladder times of downward skip-free random walks.
Section 5 gives estimates, such as maximal inequalities, for random walks in order to establish a "one-big jump principle".
Section 6 transfers results on random walks to random trees in order to identity the condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.[-]
We study a particular family of random trees which exhibit a condensation phenomenon (identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic degree emerges. This falls into the more general framework of studying the geometric behavior of large random discrete structures as their size grows. Trees appear in many different areas such as computer science (where trees appear in the analysis of random algorithms ...[+]

60J80 ; 60G50 ; 05C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The main purpose of this work is to provide a framework for proving that, given a family of random maps known to converge in the Gromov--Hausdorff sense, then some (suitable) conditional families of random maps converge to the same limit. As a proof of concept, we show that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence $(p_n)$ of even positive integers with $p_n\sim2\alpha \sqrt{2n}$ for some $\alpha\in(0,\infty)$. Then, for the Gromov--Hausdorff topology, a quadrangulation with a simple boundary uniformly sampled among those with $n$ inner faces and boundary length $p_n$ weakly converges, in the usual scaling $n^{-1/4}$, toward the Brownian disk of perimeter $3\alpha$.[-]
The main purpose of this work is to provide a framework for proving that, given a family of random maps known to converge in the Gromov--Hausdorff sense, then some (suitable) conditional families of random maps converge to the same limit. As a proof of concept, we show that quadrangulations with a simple boundary converge to the Brownian disk. More precisely, we fix a sequence $(p_n)$ of even positive integers with $p_n\sim2\alpha \sqrt{2n}$ for ...[+]

60F17 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'objectif de ce mini-cours est de présenter de la façon la plus élémentaire possible la convergence faible locale des graphes introduite par Benjamini et Schramm en 2001 et développée par Aldous et Steele (2004), Aldous et Lyons (2007). Nous montrerons comment cette notion peut être utilisée dans des dénombrements asymptotiques et dans des problèmes d'optimisation combinatoire.

05C80 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
L'objectif de ce mini-cours est de présenter de la façon la plus élémentaire possible la convergence faible locale des graphes introduite par Benjamini et Schramm en 2001 et développée par Aldous et Steele (2004), Aldous et Lyons (2007). Nous montrerons comment cette notion peut être utilisée dans des dénombrements asymptotiques et dans des problèmes d'optimisation combinatoire.

05C80 ; 60C05

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 1 - Corteel, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Le diamant aztèque - Cours 2 - Corteel, Sylvie (Auteur de la Conférence) | CIRM H

Multi angle

Le but du mini-cours sera de faire un cours introductif à différentes méthodes énumeratives à travers l'exemple des pavages par dominos du diamant aztèque. On essaiera de voir les fonctions (super)-symétriques, les moments de polynômes bi-orthogonaux, les évaluations de determinants, les algorithmes de génération...

05A15 ; 33C45

Sélection Signaler une erreur