Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
Hermitian complex spaces are a large class of singular spaces that include for instance projective varieties endowed with the metric induced by the Fubini-Study metric. Many of the problems raised by Cheeger, Goresky and MacPherson in the case of complex projective varieties admit a natural extension also in this setting. The aim of this talk is to report about some recent results concerning the Hodge-Kodaira Laplacian acting on the canonical bundle of a compact Hermitian complex space. More precisely let $(X,h)$ be a compact and irreducible Hermitian complex space of complex dimension $m$. Consider the Dolbeault operator $\bar{\partial}_{m,0}$ : $L^2 \Omega^{m,0}(reg(X),h) \to L^2\Omega^{m,1}(reg(X),h)$ with domain $\Omega{_c^{m,0}}(reg(X))$ and let $\bar{\mathfrak{d}}_{m,0} : L^2 \Omega^{m,0}(reg(X),h)\to L^2\Omega^{m,1}(reg(X),h)$ be any of its closed extension. Now consider the associated Hodge-Kodaira Laplacian $\bar{\mathfrak{d}^*} \circ\bar{\mathfrak{d}}_{m,0}$ : $L^2 \Omega^{m,0}(reg(X),h)\to L^2\Omega^{m,0}(reg(X),h)$. We will show that the latter operator is discrete and we will provide an estimate for the growth of its eigenvalues. Finally we will prove some discreteness results for the Hodge-Dolbeault operator in the setting of both isolated singularities and complex projective surfaces (without assumptions on the singularities in the latter case).
[-]
Hermitian complex spaces are a large class of singular spaces that include for instance projective varieties endowed with the metric induced by the Fubini-Study metric. Many of the problems raised by Cheeger, Goresky and MacPherson in the case of complex projective varieties admit a natural extension also in this setting. The aim of this talk is to report about some recent results concerning the Hodge-Kodaira Laplacian acting on the canonical ...
[+]
58J50 ; 53C55