Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal dimensional reduction, I will explain how to derive a very precise Weyl law and a proof of quantum magnetic oscillations for excited states, and also how to refine simultaneously old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.
Joint work with R. Fahs, L. Le Treust and S. Vu Ngoc.
[-]
In this (hopefully) blackboard talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semiclassical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal d...
[+]
81Q10 ; 35Pxx
Déposez votre fichier ici pour le déplacer vers cet enregistrement.