Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
I will sketch the construction - following ideas of Kontsevich and Nori - of a Tannakian category of exponential motives over a subfield of the complex numbers. It is a universal cohomology theory for pairs of varieties and regular functions, whose de Rham and Betti realizations are given by twisted de Rham and rapid decay cohomology respectively. The upshot is that one can attach to any such pair a motivic Galois group which conjecturally generalizes the Mumford-Tate group of a Hodge structure and, over number fields, governs all algebraic relations between exponential periods. This is a joint work with Peter Jossen (ETH).
[-]
I will sketch the construction - following ideas of Kontsevich and Nori - of a Tannakian category of exponential motives over a subfield of the complex numbers. It is a universal cohomology theory for pairs of varieties and regular functions, whose de Rham and Betti realizations are given by twisted de Rham and rapid decay cohomology respectively. The upshot is that one can attach to any such pair a motivic Galois group which conjecturally ...
[+]
11R58 ; 14G25 ; 11F80 ; 14C15 ; 11E72 ; 14D07 ; 11G35
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
We construct motives over the rational numbers associated with symmetric power moments of Kloosterman sums, and prove that their $L$-functions extend meromorphically to the complex plane and satisfy a functional equation conjectured by Broadhurst and Roberts. Although the motives in question turn out to be classical, the strategy consists in first realizing them as exponential motives and computing their Hodge numbers by means of the irregular Hodge filtration. We show that all Hodge numbers are either zero or one, which implies potential automorphicity thanks to recent results of Patrikis and Taylor. The first talk will be concerned with the arithmetic aspects and in the second one we will present the Hodge theoretic computations. Joint work with Claude Sabbah and Jeng-Daw Yu.
[-]
We construct motives over the rational numbers associated with symmetric power moments of Kloosterman sums, and prove that their $L$-functions extend meromorphically to the complex plane and satisfy a functional equation conjectured by Broadhurst and Roberts. Although the motives in question turn out to be classical, the strategy consists in first realizing them as exponential motives and computing their Hodge numbers by means of the irregular ...
[+]
11L05 ; 14C30 ; 14F40 ; 32S40