En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Sabatti, Chiara 2 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Selective inference in genetics - Sabatti, Chiara (Auteur de la Conférence) | CIRM H

Multi angle

Geneticists have always been aware that, when looking for signal across the entire genome, one has to be very careful to avoid false discoveries. Contemporary studies often involve a very large number of traits, increasing the challenges of "looking every-where". I will discuss novel approaches that allow an adaptive exploration of the data, while guaranteeing reproducible results.

62F15 ; 62J15 ; 62P10 ; 92D10

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Knockoff genotypes: value in counterfeit - Sabatti, Chiara (Auteur de la Conférence) | CIRM H

Virtualconference

The framework of knockoffs has been recently proposed to perform variable selection under rigorous type-I error control, without relying on strong modeling assumptions. We extend the methodology of knockoffs to a rich family of problems where the distribution of the covariates can be described by a hidden Markov model. We develop an exact and efficient algorithm to sample knockoff variables in this setting and then argue that, combined with the existing selective framework, this provides a natural and powerful tool for performing principled inference in genomewide association studies with guaranteed false discovery rate control. To handle the high level of dependence that can exist between SNPs in linkage disequilibrium, we propose a multi-resolution analysis, that simultaneously identifies loci of importance and provides results analogous to those obtained in fine mapping.

This is joint work with Matteo Sesia, Eugene Katsevich, Stephen Bates and Emmanuel Candes.[-]
The framework of knockoffs has been recently proposed to perform variable selection under rigorous type-I error control, without relying on strong modeling assumptions. We extend the methodology of knockoffs to a rich family of problems where the distribution of the covariates can be described by a hidden Markov model. We develop an exact and efficient algorithm to sample knockoff variables in this setting and then argue that, combined with the ...[+]

Sélection Signaler une erreur