En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Soukup, Daniel T. 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Monochromatic sumsets for colourings of $\mathbb{R}$ - Soukup, Daniel T. (Auteur de la Conférence) | CIRM H

Multi angle

N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this presentation is to discuss the motivation, ideas and difficulties involving this result, as well as the open problems around the topic. Joint work with P. Komjáth, I. Leader, P. Russell, S. Shelah and Z. Vidnyánszky.[-]
N. Hindman, I. Leader and D. Strauss proved that if $2^{\aleph_0}<\aleph_\omega$ then there is a finite colouring of $\mathbb{R}$ so that no infinite sumset $X+X$ is monochromatic. Now, we prove a consistency result in the other direction: we show that consistently relative to a measurable cardinal for any $c:\mathbb{R}\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb{R}$ so that $c\upharpoonright X+X$ is constant. The goal of this ...[+]

03E02 ; 03E35 ; 05D10

Sélection Signaler une erreur