En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Documents Robert, Christian P 1 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
In this talk, we derive a novel non-reversible, continuous-time Markov chain Monte Carlo (MCMC) sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process (PDMP), which can be seen as a variant of the Zigzag sampler. In addition to proving a theoretical validation for this new sampling algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at least as fast as an exponential distribution and at most as fast as a Gaussian distribution. Several numerical examples highlight that our coordinate sampler is more efficient than the Zigzag sampler, in terms of effective sample size.
[This is joint work with Wu Changye, ref. arXiv:1809.03388][-]
In this talk, we derive a novel non-reversible, continuous-time Markov chain Monte Carlo (MCMC) sampler, called Coordinate Sampler, based on a piecewise deterministic Markov process (PDMP), which can be seen as a variant of the Zigzag sampler. In addition to proving a theoretical validation for this new sampling algorithm, we show that the Markov chain it induces exhibits geometrical ergodicity convergence, for distributions whose tails decay at ...[+]

62F15 ; 60J25

Sélection Signaler une erreur