En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Search by event 1608 4 résultats

Filtrer
Sélectionner : Tous / Aucun
Q
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Local densities compute isogeny classes - Achter, Jeffrey (Auteur de la Conférence) | CIRM H

Multi angle

Consider an ordinary isogeny class of elliptic curves over a finite, prime field. Inspired by a random matrix heuristic (which is so strong it's false), Gekeler defines a local factor for each rational prime. Using the analytic class number formula, he shows that the associated infinite product computes the size of the isogeny class.
I'll explain a transparent proof of this formula; it turns out that this product actually computes an adelic orbital integral which visibly counts the desired cardinality. Moreover, the new perspective allows a natural generalization to higher-dimensional abelian varieties. This is joint work with Julia Gordon and S. Ali Altug.[-]
Consider an ordinary isogeny class of elliptic curves over a finite, prime field. Inspired by a random matrix heuristic (which is so strong it's false), Gekeler defines a local factor for each rational prime. Using the analytic class number formula, he shows that the associated infinite product computes the size of the isogeny class.
I'll explain a transparent proof of this formula; it turns out that this product actually computes an adelic ...[+]

11G20 ; 22E35 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
2y
Birch gave an extremely efficient algorithm to compute a certain subspace of classical modular forms using the Hecke action on classes of ternary quadratic forms. We extend this method to compute all forms of non-square level using the spinor norm, and we exhibit an implementation that is very fast in practice. This is joint work with Jeffery Hein and Gonzalo Tornaria.

11E20 ; 11F11 ; 11F37 ; 11F27

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y
The classical Brauer-Siegel theorem can be seen as one of the first instances of description of asymptotical arithmetic: it states that, for a family of number fields $K_i$, under mild conditions (e.g. bounded degree), the product of the regulator by the class number behaves asymptotically like the square root of the discriminant.
This can be reformulated as saying that the Brauer-Siegel ratio log($hR$)/ log$\sqrt{D}$ has limit 1.
Even if some of the fundamental problems like the existence or non-existence of Siegel zeroes remains unsolved, several generalisations and analog have been developed: Tsfasman-Vladuts, Kunyavskii-Tsfasman, Lebacque-Zykin, Hindry-Pacheco and lately Griffon. These analogues deal with number fields for which the limit is different from 1 or with elliptic curves and abelian varieties either for a fixed variety and varying field or over a fixed field with a family of varieties.[-]
The classical Brauer-Siegel theorem can be seen as one of the first instances of description of asymptotical arithmetic: it states that, for a family of number fields $K_i$, under mild conditions (e.g. bounded degree), the product of the regulator by the class number behaves asymptotically like the square root of the discriminant.
This can be reformulated as saying that the Brauer-Siegel ratio log($hR$)/ log$\sqrt{D}$ has limit 1.
Even if some ...[+]

11G25 ; 14G15

Sélection Signaler une erreur
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
y

Maps between curves and diophantine obstructions - Voloch, José Felipe (Auteur de la Conférence) | CIRM H

Multi angle

Given two algebraic curves $X$, $Y$ over a finite field we might want to know if there is a rational map from $Y$ to $X$. This has been looked at from a number of perspectives and we will look at it from the point of view of diophantine geometry by viewing the set of maps as $X(K)$ where $K$ is the function field of $Y$. We will review some of the known obstructions to the existence of rational points on curves over global fields, apply them to this situation and present some results and conjectures that arise.[-]
Given two algebraic curves $X$, $Y$ over a finite field we might want to know if there is a rational map from $Y$ to $X$. This has been looked at from a number of perspectives and we will look at it from the point of view of diophantine geometry by viewing the set of maps as $X(K)$ where $K$ is the function field of $Y$. We will review some of the known obstructions to the existence of rational points on curves over global fields, apply them to ...[+]

11G20 ; 11G35 ; 14G05

Sélection Signaler une erreur