m

F Nous contacter


0

Search by event  1866 | enregistrements trouvés : 5

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic transport equations with a relaxation operator that drives the phase space distribution towards the spatially local equilibrium, a Gaussian with the same macroscopic parameters. Due to the absence of dissipation w.r.t. the spatial direction, convergence to the global equilibrium is only possible thanks to the transport term that mixes various positions. Hence, such models are hypocoercive.
We shall prove exponential convergence towards the equilibrium with explicit rates for several linear, space periodic BGK-models in dimension 1 and 2. Their BGK-operators differ by the number of conserved macroscopic quantities (like mass, momentum, energy), and hence their hypocoercivity index. Our discussion includes also discrete velocity models, and the local exponential stability of a nonlinear BGK-model.
The third part of the talk is concerned with the entropy method for (non)symmetric Fokker-Planck equations, which is a powerful tool to analyze the rate of convergence to the equilibrium (in relative entropy and hence in L1). The essence of the method is to first derive a differential inequality between the first and second time derivative of the relative entropy, and then between the entropy dissipation and the entropy. For hypocoercive Fokker-Planck equations, i.e. degenerate parabolic equations (with drift terms that are linear in the spatial variable) we modify the classical entropy method by introducing an auxiliary functional (of entropy dissipation type) to prove exponential decay of the solution towards the steady state in relative entropy. The obtained rate is indeed sharp (both for the logarithmic and quadratic entropy). Finally, we extend the method to the kinetic Fokker-Planck equation (with nonquadratic potential).
In this talk we discuss the convergence to equilibrium in conservative-dissipative ODE-systems, kinetic relaxation models (of BGK-type), and Fokker-Planck equation. This will include symmetric, non-symmetric and hypocoercive evolution equations. A main focus will be on deriving sharp decay rates.
We shall start with hypocoercivity in ODE systems, with the ”hypocoercivity index” characterizing its structural complexity.
BGK equations are kinetic ...

35Q84 ; 35H10 ; 35B20 ; 35K10 ; 35B40 ; 47D07 ; 35Pxx ; 47D06 ; 82C31

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

This talk is devoted to the presentation of algorithms for simulating rare events in a molecular dynamics context, e.g., the simulation of reactive paths. We will consider $\mathbb{R}^d$ as the space of configurations for a given system, where the probability of a specific configuration is given by a Gibbs measure depending on a temperature parameter. The dynamics of the system is given by an overdamped Langevin (or gradient) equation. The problem is to find how the system can evolve from a local minimum of the potential to another, following the above dynamics. After a brief overview of classical Monte Carlo methods, we will expose recent results on adaptive multilevel splitting techniques.
This talk is devoted to the presentation of algorithms for simulating rare events in a molecular dynamics context, e.g., the simulation of reactive paths. We will consider $\mathbb{R}^d$ as the space of configurations for a given system, where the probability of a specific configuration is given by a Gibbs measure depending on a temperature parameter. The dynamics of the system is given by an overdamped Langevin (or gradient) equation. The ...

65C05 ; 65C60 ; 65C35 ; 62L12 ; 62D05

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

During this talk, I will present how the development of non-reversible algorithms by piecewise deterministic Markov processes (PDMP) was first motivated by the impressive successes of cluster algorithms for the simulation of lattice spin systems. I will especially stress how the spin involution symmetry crucial to the cluster schemes was replaced by the exploitation of more general symmetry, in particular thanks to the factorization of the energy function.
During this talk, I will present how the development of non-reversible algorithms by piecewise deterministic Markov processes (PDMP) was first motivated by the impressive successes of cluster algorithms for the simulation of lattice spin systems. I will especially stress how the spin involution symmetry crucial to the cluster schemes was replaced by the exploitation of more general symmetry, in particular thanks to the factorization of the ...

65C05 ; 65C40 ; 60K35 ; 68K87

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Semiclassical methods have shown to be very efficient to get quantitative description of metastability of Langevin dynamics. In this talk we try to explain the main ideas of this approach in both reversible and non-reversible cases.

35P15 ; 35P20 ; 82C31 ; 35Q84 ; 47A75 ; 81Q60

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Material properties of soft matter are governed by a delicate interplay of energetic and entropic contributions. In other words, generic universal aspects are as relevant as local chemistry specific properties. Thus many different time and length scales are intimately coupled, which often makes a clear separation of scales difficult. This introductory lecture will review recent advances in multiscale modeling of soft matter. This includes different approaches of sequential and concurrent coupling. Furthermore problems of representability and transferability will be addressed as well as the question of scaling of time upon coarse graining. Finally some new developments related to data driven methods will be shortly mentioned.
Material properties of soft matter are governed by a delicate interplay of energetic and entropic contributions. In other words, generic universal aspects are as relevant as local chemistry specific properties. Thus many different time and length scales are intimately coupled, which often makes a clear separation of scales difficult. This introductory lecture will review recent advances in multiscale modeling of soft matter. This includes ...

82D60 ; 82D80 ; 82B80 ; 65Z05

Z