m

F Nous contacter


0

Search by event  1991 | enregistrements trouvés : 4

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à tout poset. Nous développerons ensuite un lien avec les polytopes (objets de la géométrie discrète). Un sous-ensemble de $\mathbb{R}^n$ est un polytope s'il peut être écrit comme le plus petit convexe contenant un ensemble de points V fini donné. Nous discuterons des polytopes entiers (c'est à dire $V\subset\mathbb{Z}^n$) et le polynôme d'Ehrhart qui est un polynôme associé à tout polytope entier. Le polytope d'ordre est un polytope associé à un poset. Nous montrerons que le polynôme d'Ehrhart du polytope d'ordre P est le polynôme d'ordre de P.
Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à ...

06A07 ; 52B20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à tout poset. Nous développerons ensuite un lien avec les polytopes (objets de la géométrie discrète). Un sous-ensemble de $\mathbb{R}^n$ est un polytope s'il peut être écrit comme le plus petit convexe contenant un ensemble de points V fini donné. Nous discuterons des polytopes entiers (c'est à dire $V\subset\mathbb{Z}^n$) et le polynôme d'Ehrhart qui est un polynôme associé à tout polytope entier. Le polytope d'ordre est un polytope associé à un poset. Nous montrerons que le polynôme d'Ehrhart du polytope d'ordre P est le polynôme d'ordre de P.
Les posets (ensembles partiellement ordonnés) sont des structures utiles pour la modélisation de divers problèmes (scheduling, sous-groupes d'un groupe), mais ils sont aussi la base d'une théorie combinatoire très riche. Nous discuterons des paramètres de posets comme la largeur, la dimension et les partitions en chaînes. À partir de là on fera un lien avec les polynômes en introduisant et étudiant le polynôme d'ordre — un polynôme associé à ...

06A07 ; 52B20

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transductions - Partie 1
Filiot, Emmanuel (Auteur de la Conférence) | CIRM (Editeur )

Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des transducteurs, et clôture par composition.
Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des ...

68Q45 ; 03D05 ; 03B25

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Transductions - Partie 2
Reynier, Pierre-Alain (Auteur de la Conférence) | CIRM (Editeur )

Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des transducteurs, et clôture par composition.
Après une introduction générale présentant les principaux modèles et problèmes étudiés, nous étudierons plus précisément trois sujets qui permettront d’illustrer des propriétés algorithmiques, des aspects algébriques et logiques de cette théorie :
- caractérisation, décision et minimisation des transducteurs séquentiels ;
- équivalence et fonctionnalité de transducteurs : de l’indécidabilité à la décidabilité ;
- présentation logique des ...

68Q45 ; 03D05 ; 03B25

Z