m

F Nous contacter


0

Search by event  2100 | enregistrements trouvés : 5

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Post-edited  Algebraicity of the metric tangent cones
Wang, Xiaowei (Auteur de la Conférence) | CIRM (Editeur )

We proved that any K-semistable log Fano cone admits a special degeneration to a uniquely determined K-polystable log Fano cone. This confirms a conjecture of Donaldson-Sun stating that the metric tangent cone of any close point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. This is a joint work with Chi Li and Chenyang Xu.

14J45 ; 32Q15 ; 32Q20 ; 53C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Pluripotential Kähler-Ricci flows
Guedj, Vincent (Auteur de la Conférence) | CIRM (Editeur )

We develop a parabolic pluripotential theory on compact Kähler manifolds, defining and studying weak solutions to degenerate parabolic complex Monge-Ampere equations. We provide a parabolic analogue of the celebrated Bedford-Taylor theory and apply it to the study of the Kähler-Ricci flow on varieties with log terminal singularities.

53C44 ; 32W20 ; 58J35

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Multi angle  Moduli of algebraic varieties
Dervan, Ruadhai (Auteur de la Conférence) | CIRM (Editeur )

One of the central problems in algebraic geometry is to form a reasonable (e.g. Hausdorff) moduli space of smooth polarised varieties. I will show how one can solve this problem using canonical Kähler metrics. This is joint work with Philipp Naumann.

14D20 ; 32Q15 ; 53C55

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Let $f : X \to Y$ be a fibration between two projective manifolds. The Iitaka’s conjecture predicts that the Kodaira dimension of $X$ is larger than the sum of the Kodaira dimension of $X$ and the Kodaira dimension of the generic fiber. We explain a proof of the Iitaka conjecture for algebraic fiber spaces over abelian varieties or projective surfaces.
It is a joint work with Mihai Paun.

14E30 ; 14K05 ; 14J10

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We develop apriori estimates for scalar curvature type equations on compact Kähler manifolds. As an application, we show that K-energy being proper with respect to $L^1$ geodesic distance implies the existence of constant scalar curvature Kähler metrics. This is joint work with Xiuxiong Chen.

53C55 ; 32Q20 ; 32Q15

Z