m

F Nous contacter


0

Search by event  2354 | enregistrements trouvés : 5

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...

35Q83 ; 35L65 ; 35B65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We will first outline the asymptotic-transition from quantum to classical, to kinetic and then the hydrodynamic equations, and then show how such asymptotics can guide the design and analysis of the so-called asymptotic-preserving schemes that offer efficient multiscale computations between different scales. Recent random batch methods for particle systems that are valid also for the mean-field regimes will be presented.

82C10 ; 82C40 ; 70-08 ; 35Q35 ; 65Mxx

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...

35Q83 ; 35L65 ; 35B65

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

We will first outline the asymptotic-transition from quantum to classical, to kinetic and then the hydrodynamic equations, and then show how such asymptotics can guide the design and analysis of the so-called asymptotic-preserving schemes that offer efficient multiscale computations between different scales. Recent random batch methods for particle systems that are valid also for the mean-field regimes will be presented.

82C10 ; 82C40 ; 70-08 ; 35Q35 ; 65Mxx

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.
This talk introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in $L^{2}\left ( \left [ 0,T \right ],H_{x}^{s} \right )$. The new method outperforms classical averaging lemma results when the right-hand side of the ...

35Q83 ; 35L65 ; 35B65

Z